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0.1 Introduction, Credits and Notation

0.1.1 Credits
A big thank you to

• Chung.

0.1.2 How to use the guide
Anything in a white box with a blue title frame like

Title here
Content placed in these contains information or principles that must be remem-
bered for the exams. This applies information placed in the same colour box,
but without a title!

Any equation which contains a regular, black box like this is important information but
you shouldn’t need to memorise it.

This guide is very detailed, almost like its own set of lecture notes. It aims to answer
as many questions as possible regarding both the maths and the physics in this module.
Any parts non-examinable will be explicitly marked non-examinable. Beware that this
can change over the years if this guide isn’t updated and therefore check with the lecturer.

0.1.3 Tips
• Strong chance (with the removal of magnetism from this year’s course) that the

majority of the module will be examined.

• Ensure you are familiar with PX3A3 Electrodynamics (gauge transform, Maxwell’s
equations) and thermodynamical quantities from PX265 Thermal Physics II or
PX284 SMETO.

• For the optical properties, Fox’s book Optical Properties of Solids has quite good
practice questions

• For superconductivity, Blundell’s, A Short Introduction to Superconductivity, also
has good practice problems

• As always: past papers go hard!

• There are a lot of figures in these notes, I recommend being able to interpret and
understand them, maybe even recall the figures relating to experimental setups.
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Chapter 1

Superconductivity

Some notation for this chapter (please note, some changes later in this chapter to keep
consistent with the lecture course, watch out):

• R, resistance; ρ, resistivity; σ = 1/ρ: conductivity.

• E: electric field; B, magnetic flux density; H, magnetic field; J, electric current
density.

1.1 Basic Properties of Superconductors
There are multiple characteristics that describe whether a material is in a superconducting
state (click the items to visit their respective subsections):

Properties of Superconductors

• Zero electrical resistance below a critical temperature Tc. hence, R, ρ = 0.
By Ohm’s law, E = ρJ =⇒ E = 0 in the bulk of the superconductor.

• Observes the Meissner effect.
• Has surface currents.
• Has a critical field.
• Has a critical current.
• May have persistent currents.
• Superconductors have poor thermal conductivity, since the charge carriers do

not carry heat or entropy.

1.1.1 Meissner effect
If a material in the superconducting state is subjected to a magnetic field (say, using an
electromagnet to raise the external field from 0T to a field Bext < Bc, a critical field),
a supercurrent is induced at the very surface of the superconductor which exclude and
expel Bext, such that

Meissner effect
B = 0 in the bulk of a superconductor

3



Figure 1.1: (a) Above Tc, external fields are able to penetrate the material. (b) shows
the same material now in the superconducting state (below Tc). Non-examinable: Super-
currents flow horizontally around the material (shown in yellow) and cause the external
fields to be repulsed from the surface.

Inside the superconductor

B = µ0(1 + χSC)H = 0 (1.1)
=⇒ χSC = −1 (1.2)

Superconductors are perfect diamagnets.

It is important to note that the diamagnetism is due to surface currents and not atomic
orbits.

However, the expelled flux density close to the surface of the superconductor can depend
on sample shape. For example, take a sphere and place it in a uniform field. Then the
magnetic field lines are more dense closer to the equator than they are at the poles.

This can lead to complicated intermediate states, where part of the sample remains su-
perconducting, but other parts remain normal (i.e., regions of no superconductivity). For
the sphere example, this results in planes of non-superconducting regions parallel to the
field lines.

Moreover, whether you cool a conductor before or after does not matter if the material is
a superconductor:

1.1.2 Critical Fields
There are two types of superconductors, each with different phase transitions.

Type I Superconductors

For a Type I, the critical magnetic field at temperature T is

Critical magnetic field

Hc(T ) = Hc(0)

[
1−

(
T

Tc

)2
]

(1.3)
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Figure 1.2: Cartoon showing the difference between a superconductor and perfect con-
ductor.

H

T

SC

Tc

Hc

(a) Phase diagram for Type I superconduc-
tors. The boundary is a parabola.

−M

H
Hc

(b) Magnetisation of Type I superconduc-
tor against applied field. The gradient is 1.

Figure 1.3: Graphs displaying the important properties of Type 1 superconductors.

Type II Superconductors

Type II Superconductors

Type II Superconductors have 2 critical phases.
• At H < Hc1, we have the Meissner state which is the same as in Type 1:
ρ = 0, χ = −1.

• At Hc1 < H < Hc2, we have the Mixed state where ρ = 0, χ 6= −1.
• At H > Hc2, superconductivity is destroyed.

The phase diagram is shown in Fig. 1.4(a) and the magnetisation in Fig. 1.4(b).

The most important things to note are

• In a mixed state, fine filaments (regions) of the material become normal. This means
that the external magnetic flux can penetrate the material.

• The magnetisation graph in Fig. 1.4(b) is linear from the origin to Hc1 with gradient
1. After that, it tapers down towards 0 as H → Hc2 in a hyperbolic fashion - i.e.
draw a reciprocal graph like 1/x.

• µ0Hc1 ∼ 10−2T but µ0Hc2 can be large.
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H

T

Meissner

Mixed Normal

Tc

Hc1

Hc2

(a) Phase diagram for Type II supercon-
ductors. The boundaries are parabolas.

−M

Hc1

H

(b) Magnetisation of Type II superconduc-
tor against applied field.

Figure 1.4: Graphs displaying the important properties of Type 2 superconductors.

1.1.3 Surface Currents
In Section 1.1.1, we briefly mentioned supercurrents - but why do they arise and why only
at the surface? This is explained by Ampere’s Law. Recall:∮

C

B · dl = µ0I. (1.4)

where C is a closed loop and I is the current enclosed by that loop. We can then try
evaluating along two loops: a loop which is entirely in the bulk, and another loop which
is "half-in, half-out" of the superconductor.

Indeed, by the Meissner effect, there is zero B inside the superconductor, so Ampere’s
law evaluates to 0. Hence there is no current inside the bulk at all.

However with a non-zero B outside the material, the loop that is half-i the superconductor
receives a non-zero contribution to Ampere’s law, so there is indeed a surface supercurrent.

1.1.4 Critical Currents

Silsbee’s Rule
The superconducting state is destroyed above when the current exceeds a critical
current Ic.1.

For a wire of radius a, using Ampere’s law, the current at the surface is

B(a) =
µ0I

2πa
, (1.5)

This can be arranged to get the critical current, which occurs at the critical field

Ic =
2πaBc

µ0

(1.6)
1Silsbee, F. B. (1918). "Note on electrical conduction in metals at low temperatures". Bulletin of the

Bureau of Standards. 14 (2): 301. doi:10.6028/bulletin.335. ISSN 0096-8579.
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(a) (b)(a)(a)(a)(a)(a)(a) (c)

Figure 1.5: (a) Cylindrical conductor with applied magnetic field B, causing a current
loop I. Then dotted loop l1 is on the surface of the conductor. (b) Same system now
cooled to be a superconductor. (c) Superconductor when the field B is removed.

1.1.5 Persistent Currents
Suppose we have the following setup in Fig. 1.5(a). We know the magnetic flux is given
by

Φ =

∫
B · dS (1.7)

But we also know Faraday’s Law. Thus, we differentiate both sides with respect to time:

∂Φ

∂t
= −

∫
∂B

∂t
· dS = −

∫
(∇× E) · dS = −

∮
E · dl, (1.8)

where in the last equality, we applied Green’s theorem. We know that for a conductor,
E = 0 in any loop so the above equation tells us that there is flux conservation. Now,
let’s cool the conductor to T < Tc. Since a superconductor is still a conductor, flux
conservation still applies. This causes some flux to be shifted out of the concentric hole as
in Fig. 1.5(b). Keeping the temperature fixed and removing B gives us Fig. 1.5(c). Since
flux conservation holds, the flux through the concentric hole must be fixed. The external
fields disappear since they are not trapped in the confines of the superconductor.

1.2 Thermodynamics of Superconductors
At constant pressure dG = −S dT −m dB, where G is the Gibbs free energy and m is
the magnetic moment. Therefore, when T is constant and less than the superconducting
critical temperature TC

Gs(B)−Gs(0) = −
∫ B

0

m dB

Here subscript s (or n ) represents the superconducting (or normal) state, m = MV and
M = −I = −B/µ0 for a superconductor. This implies that

Gs(B)−Gs(0) = −
∫ B

0

m dB =
V B2

2µ0
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Tc

C

T

Metal

Superconductor

Tc

S

T

Superconductor

(a) (b)

Metal

Figure 1.6: (a) Graph showing heat capacity C against temperature T (b) Graph showing
entropy S against temperature T . All temperatures are in Kelvin.

At B = Bc, we have that
Gs (Bc) = Gn (Bc) = Gn(0)

because - the superconducting and normal states are in equilibrium, - we assume no field
dependence in Gn.

Hence
Gn(0)−Gs(0) =

V B2

2µ0

and therefore
Sn − Ss = − V

µ0

Bc
dBc

dT
> 0

because
dBc

dT
< 0

Differentiation yields

Cn − Cs = −TV
µ0

[
Bc

d2Bc

dT 2
+

(
dBc

dT

)2
]

Remark.
B2

c
2µ0

, (1.9)

is the condensation energy which is the energy needed to get the superconducting state

We see that in Fig. 1.6(a), the superconducting metal has a non-linear increase in C,
but at T > Tc, it behaves like a regular metal. The straight line contribution for the
metal is the Debeye contribution and shows a proportional relationship to T . The
entropy S can also be plotted and is shown in Fig. 1.6(b). Moreover, we se at Tc that is
it continuous, meaning we have a second-order phase transition.

1.3 London Equations
The London brothers wanted to effectively have an ‘Ohm’s Law’ for superconductors relat-
ing the vector potential and current density. They realised that there was some long-range
order phenomenon regarding the momentum vector. The rigidity of the superconducting
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wavefunction ψ was also responsible for perfect diamagnetism. Indeed, they made two
important assumptions

Assumptions of the London Equation

1. Superconducting charge carriers are NOT normal state carriers and only exist
below Tc.

2. The superconducting charge carriers all occupy the same energy state
(bosonic). This implies 0 canonical momentum.

1.3.1 Experimental justification
• No hysteresis on the magnetisation M against H curve compared to normal state

carriers. This means there is no ‘lag’ in the system’s response.

• No dissipation of supercurrent

No hysteresis already told the London brothers that these charge carriers were not just
regular electrons. Importantly, there was no continuum of states (unlike electrons) but a
single p = 0 state which the second assumption states.

The superconducting current density is given by

J = nsqv, (1.10)

where

• ns is the superconducting charge density

• q is the electric charge of each charge carrier

• v is the carrier velocity

The canonical momentum is defined as the sum of the kinetic and electromagnetic mo-
mentum, so

p = mv + qA, (1.11)
where A is the magnetic vector potential satisfying B = ∇ × A as you know from
electromagetism. Setting it to be zero, we then get v = −qA and thus

London Equation

J = −nsq
2

m
A (1.12)

1.3.2 Consequences
• The superconducting currents can be entirely caused by a magnetic field B.

• London Penetration Depth λ:

• Macroscopic quantum state
Theorem 1.3.1. The London Penetration Depth λ characterizes the distance to
which a magnetic field penetrates into a superconductor and becomes equal to e−1 times
that of the magnetic field at the surface of the superconductor. It satisfies the equation

∇2B =
B

λ2
(1.13)
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Proof. Take the curl of Eq, (1.12):

∇× J = −nsq
2

m
(∇×A) (1.14)

By Maxwell equations,
∇×B = µ0J+ µ0ε0

∂E

∂t
= µ0J (1.15)

since E = 0. Then rearranging for J and substituting into Eq. (1.14):

∇× (∇×B) = −nsq
2µ0

m
B = ∇(∇ ·B)−∇2B, (1.16)

=⇒ ∇2B =
nsq

2µ0

m
B as ∇ ·B = 0, (1.17)

=
B

λ2
, (1.18)

where

London Penetration Depth Formula

λ =

√
m

µ0nsq2
(1.19)

Notice then we have derived a differential equation in Theorem 1.3.1. Writing it in
component form:

∂2Bi

∂x2i
=
Bi

λ2
, (1.20)

where i = x, y, z. In order to create a well-posed PDE, we require boundary conditions.
First, we let the z coordinate run parallel to the superconductor surface and x perpen-
dicular but into the superconductor. A general solution to the PDE is

Bz = B1e
−x/λ +B2e

x/λ (1.21)

with boundary conditions Bz(x = 0) = B0 and Bz → 0 as x→ ∞.2 The second boundary
condition eliminates the ex/λ term since it diverges as x increases. Therefore the equation
for the magnetic field is

Bz = B0e
−x/λ (1.22)

Indeed we see that if we set x = λ, the magnetic field is reduced by a factor of e in
strength.

Experiments in the variation of λ look like Fig. 1.8. Specifically, there is always a non-zero
penetration depth at 0 K. This depends on the material, its geometry and so on.

In Section 1.2, we noted the existence of a phase transition. In PX3A7 Statistical Physics,
this suggests we can describe the system by some order parameter. For superconductors,
this is

2Obviously a real superconductor doesn’t have infinite thickness, but I simply mean into the bulk.
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Figure 1.7: Graph of Bz against x from the surface of a superconductor.

Figure 1.8: Penetration depth variation with temperature for YBa2Cu3O7 [3].

Superconducting Wavefunction (order parameter)

ψ = ψ0e
iθ, (1.23)

where ψ is the wavefunction of the superconducting charge carriers.

1.3.3 Lack of gauge invariance of the London Equation
The London equation is unfortunately not gauge invariant (meaning we can’t transform
the physical system mathematically and still have it represent the same system). The
London equation is valid in the London gauge, ∇ ·A = 0.

The canonical momentum is also not gauge invariant. Simply shift it and A by some
scalar derivative ∇χ:

A → A+∇χ p → p+ q∇χ (1.24)

Assuming a spatial-dependence on the superconducting wavefunction ψ(r) = ψ0e
iθ(r), we

11



can apply the momentum operator to ψ:

pψ = −i~∇ψ = ~(∇θ)ψ,

thus the gauge transform is ~∇θ → ~∇θ + q∇χ which means θ → θ + qχ/~ so the phase
is also not gauge invariant (sadge).

Is this an issue though? Luckily it isn’t entirely an issue. The kinetic energy operator of
the Hamiltonian p · p/2m is gauge-invariant. Considering only the numerator, we have
mv = p − qA = ~∇θ − qA all squared. But from the gauge transforms, the q∇χ terms
cancel and we are fine.

1.4 Flux quantisation
The existence of an order parameter leads to a remarkable observation in superconductors,
that the flux has distinct levels. We assume a spatially-dependent ψ(r) = ψ0e

iθ(r). Then
we associate |ψ|2 = ns, the charge carrier density. This motivation is from Ginzburg and
Landau, and we will see a more complete Ginzburg-Landau theory later.

Using this wavefunction, J can be rewritten as

J = <(ψ∗qvψ). (1.25)

where < denotes the real part and ∗ denotes complex conjugation. Now, unlike in the
derivation of the London equation, we will not assume p = 0 to consider excited states
and so qv = (q/m)(p − qA). Substituting this back into the expression for J, we have
two parts to deal with

J ∝ ψ∗pψ + ψ∗qAψ, (1.26)

where we have temporarily dropped the q/m prefactor and will add it back on at the end.

ψ∗pψ = ψe−iθ(−i~)
(
i∇θψ0e

iθ
)
= ns~∇θ (1.27)

ψ∗Aψ = nsA =⇒ J =∝ ns(~∇θ − qA) (1.28)

Now remember we are in a superconductor and so we take an integral of a closed loop.
We re-add the factor q/m in front of everything and∮

J · dl = nsq

M

(
~
∮

∇θ · dl− q

∮
A · dl

)
(1.29)

But we know the definition of magnetic flux, it’s just the total flux density enclosed by a
surface. However we also know that B = ∇×A, so we can apply Stokes’ theorem:

Φ =

∫
S

B · dS =

∮
∂S

A · dl (1.30)

We can therefore substitute for Φ directly and get∮
J · dl = nsq

M

(
~
∮

∇θ · dl− qΦ

)
. (1.31)

Now take any generic superconducting material with flux going through it (e.g. a hole
like in Fig. 1.5) and consider two loops l1 and l2 both in the bulk, but the latter loop
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surrounds some Φ whereas the former doesn’t. Obviously, for l2,
mathbfJ = 0 but Φ 6= 0 and we can rearrange the above equation for Φ:

Φ =
~
q

∮
∇θ · dl (1.32)

For ψ to be single-valued then the integral term must be 2πN with N ∈ N. Substituting
this into Φ gets

Φ =
Nh

q
. (1.33)

Namely, flux is quantised.

Experiments showed that q = 2e and Φ = Nh/2e, i.e. superconducting charge
carriers are electron pairs.

1.5 Bose-Einstein Condensates
The Maxwell-Boltzmann distribution can be used to describe identical„ distinguishable
particles. In contrast, the Fermi-Dirac (-) and Bose-Einstein (+) distributions can be
used to describe identical, indistinguishable particles

f(ε) =
1

e
ε−µ
kBT ∓ 1

(1.34)

where µ is the chemical potential, which can be interpreted as the energy absorbed or
released to change the particle number by 1, assuming entropy and volume are fixed:

µ =
∂U

∂N

∣∣∣∣
S,V

(1.35)

where the system has internal energy U .
Definition 1.5.1. Let E, T represent energy and temperature (in Kelvin) respectively.
Then EF , TF are the Fermi energy and Fermi temperature respectively with EF =
kBTF . As you know, the Fermi energy is the energy of the highest occupied state and is
well-defined at T = 0.

1.5.1 Ideal Fermi gas
A graph of chemical potential against temperature (rescaled by EF and TF ) is shown in
Fig. 1.9. Now, fermions obey the Pauli Exclusion Principle (PEP). At T = 0, all states
are filled accordingly: In particular, there are different scenarios based on the temperature

0 < T < TF :

• Energy is now added to the system.

• Some of the initial fermions close to EF in Fig. 1.10 are excited (they go to higher
rungs of the energy ladder), leaving vacant states for particles to fill.

• Excited states mean more available ways to arrange the particles

• To keep entropy S fixed, internal energy U must decrease =⇒ µ gets smaller.

13



Figure 1.9: Graph of chemical potential against temperature for an ideal Fermi gas.

T = TF : Remember the Fermi energy is the energy of the highest occupied ground state
T = 0 which occurs at T = TF . Thus, at this temperature, all initial ground states are
unoccupied. Therefore, particles can be added to the ground state.

The number of ways to organise these particles offsets the energy, which requires µ < 0!
This is because, if we add a particle to the system, the available configuration space
increases which increases S. But to make sense of µ, we require S to be fixed, so the
additional particle can be thought of as adding a quantum of negative energy into the
system, thus ∆U < 0 whilst ∆N > 0. This is the classical limit and explains why in
Fig. 1.9, above TF , it goes negative. Hence, the PEP dominates at low T in a Fermi gas.

1.5.2 Ideal Bose gas
Now, the occupancy of bosons fBE > 0 since numerous bosons can occupy the same
quantum state, and the ground state therefore will always contain at least one boson.

High T : At these temperatures, µ < 0 but it is also the classical limit as for the
fermionic case.

T = 0 : Bosons do not obey the PEP. Therefore, there is only 1 ground state which
contains all bosons. As a result, there is no cost to adding a particle, hence µ = 0 as in
Fig. 1.11 at T = 0. This is the Bose-Einstein Condensate

0 < T < Tc : Here, Tcis the phase transition temperature. Suppose a particle is added
to the ground state. This is an excited state, and there are more possible arrangements.
However, most of the bosons are in the ground state, so µ is slightly negative. A
mathematical argument follows from requiring fBE > 0, then E − µ > 0 for every energy
value. Hence, if E = 0, we require µ < 0.

T = Tc : the ground state is now unoccupied, so there is a high number of available
states and configurations. By same justification for the fermionic case, µ < 0.

Not all particles are i the E = 0 ground state when 0 < T < Tc. This is captured in the
particle density function:

n︸︷︷︸
total particle density

= n0︸︷︷︸
ground state density

+2.61

(
mkBT

2π~2

)3/2

︸ ︷︷ ︸
normal state density

(1.36)
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+μ

EF

Figure 1.10: Schematic showing fermion arrangement (black-filled circles) in the ground
state at T = 0. Potential space for new fermion (white circle) requires added µ = EF into
the system.

1.6 Ginzburg-Landau Theory

Ginzburg-Landau theories (GLTs) attempt to describe phase transitions in terms of an
order parameter and phenonomelogical quantities/functions, as well as temperature and
pressure etc. This module (PX446) is not a course in that - we will take GLTs as valid to
study superconductivity (in fact, superconductivity is a special case in GLTs). I recom-
mend looking at PX3A7 Statistical Physics and this pdf to refresh your memory.

Anyways, we start by defining a complex order parameter similar to before, that is
spatially-dependent

Ψ =

{
0 T > Tc

ψ0(r)e
iθ(r) T < Tc

, (1.37)

where ψ0(r) : R3 → R is the amplitude such that |ψ0|2 = ns. We will consider the free
energy density near Tc and then minimise the energy w.r.t Ψ.

1.6.1 Bulk phase transition
Assume no defects and away from the surface. Then Ψ 6= Ψ(r), i.e. it is not spatially
dependent as the material looks identical everywhere in the bulk. Now, from GLTs, we
need to construct the free energy density by writing generic terms for all possible scalar
invariants. For example, for a magnetisation vector m, the first order scalar invariant is
m ·m, i.e. the inner product. We take the same idea ("guess") and write the free energy
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Figure 1.11: Chemical potential of fermions and bosons. The dashed line is the chemical
potential computed from the Maxwell Boltzmann distribution for classical particles. Re-
produced from Ref. [4].

density for the superconducting bulk to be

fs(T ) = fn(T )︸ ︷︷ ︸
free energy density in normal stae

+a(T )|Ψ|2 + 1

2
b(T )|Ψ|4 (1.38)

where we have cut off the series after the fourth order (higher order terms can be included
but don’t make a consequential difference) and the functions a(T ) : R≥0 → R and b(T ) :
R≥0 → R>0.
Remark. There is no |Ψ|3 term. This is because the inner product of a complex function
space is defined as 〈Ψ|Ψ〉 = Ψ∗Ψ = |Ψ|2. We cannot produce |Ψ|3 from a linear combina-
tion or product of scalar invariants (inner product). This would be different if the physics
could be represented in a real scalar order parameter (such as the isotropic-nematic phase
transition).

Plotting fs − fn we have in Fig. 1.12. In particular, a(T ) = a0(T − Tc) where a0 > 0.
Remember we are expanding around Tc. We also have b(T ) = b > 0. We can now
differentiate f w.r.t |Ψ| to find the stationary points:

d(fs − fn)

d|Ψ|
= 2a0(T − Tc)|Ψ|+ 2b|Ψ|3 (1.39)

|Ψ| =

{
0 T > Tc(
a0
b

)1/2
(Tc − T )1/2 T < Tc

(1.40)

So it is a decreasing square root, and as a function of T , it is zero at T = Tc and so
looks like an order parameter. At the beginning of this section, we had |Ψ| = √

ns and
λ = 1/

√
ns so λ ∝ (Tc − T )−1/2. Substituting our |Ψ| back in gives

fs − fn = −a
2
0

2b
(T − Tc)

2 < 0 (1.41)
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fs - fn a > 0

a < 0

|Ψ|

Figure 1.12: Plot of fs − fn for different values of |Ψ|.
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This is the condensation energy, the energy saved upon becoming a superconductor.

Now, as you may remember from statistical mechanics, once we have the free energy, we
can find other thermodynamical quantities. Recall:

S = −
(
∂f

∂T

)∣∣∣∣
V,N

C = T

(
∂S

∂T

)∣∣∣∣
V,N

(1.42)

which are the entropy and specific heat capacity respectively. Since derivatives are linear,
we can also just directly differentiate the free energy difference fs − fn directly to get the
entropy difference and heat capacity difference respectively. This is a simple differentiation
exercise and we get

Ss − Sn =

{
0 T > Tc

−a20
b
(Tc − T ) T < Tc

(1.43)

Cs − Cn =

{
0 T > Tc
a0T
b

T < Tc
(1.44)

• Entropy decreases when entering the superconducting phase, but there is no dis-
continuous jump.

• C discontinuously jumps from 0 to a non-zero value at Tc. This matches with
experiments!

1.6.2 Inhomogeneous + Charged case
We now consider doing the exact same thing with the complete Ginzburg-Landau expres-
sion for superconductivity, where now Ψ = Ψ(r), there is the inclusion of a charged term
and a term for the energy stored in an applied field B0:

Fs = Fn+

∫
d3r

[
a(T )|Ψ(r)|2 + b

2
|Ψ(r)|4 + 1

2m
| − i~∇Ψ(r) + 2eAΨ(r)|2 + (B(r)−B0)

2

2µ0

]
(1.45)

(Don’t memorise this). The cases where A are zero and non zero are both examinable.

A = 0

Setting A = 0

Fs = Fn +

∫
fd3r

where
f = a(T )|Ψ|2 + b

2
|Ψ|4 + ~2

2m
|∇Ψ|2

This equation is entirely real and so here we only consider variations in the amplitude of
the order parameter. If Ψ is allowed to vary Ψ → Ψ+ dΨ and then

df = 2aΨ dΨ + 2bΨ3 dΨ +
~2

2m
d|∇Ψ|2

Now, to first order

d|∇Ψ|2 = |∇(Ψ + dΨ)|2 − |∇Ψ|2 = 2∇Ψ · ∇( dΨ)
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and
∇Ψ · d∇Ψ = ∇ · [∇ΨdΨ]−

(
∇2Ψ

)
dΨ

The first term on the right-hand side of this last equation would represent a surface
contribution in our superconductor that we can take to be zero. Substituting this back
into the equation for df above we have,

df = 2 dΨ

[(
a+ bΨ2

)
Ψ− ~2

2m
∇2Ψ

]
= 0

for any Ψ. Minimising this implies df = 0 for any dΨ, and leaves us with,

− ~2

2m
∇2Ψ+

(
a+ bΨ2

)
Ψ = 0

which looks like a non-linear Schrödinger equation. Near Tc we can neglect the bΨ2 term
because Ψ → 0 and then the equation takes the form

∇2ψ =
ψ

ξ2

where ξ =
√

~2
2m|a(T )| .

A 6= 0

Now we turn on the magnetic field. Just like the lecturer, I cannot be asked to type out
about 2 pages of maths even though I could. You must minimise w.r.t. variations in both
Ψ and A. This (from what I can tell) has not appeared in exams. We can therefore skip
to the main result

Ginzburg-Landau Equations

~2

2m

(
−i∇+

2e

~
A

)2

Ψ+ a(T )Ψ + bΨ3 = 0,

∇×B

µ0

= J = −ie~
m

[Ψ∗∇Ψ−Ψ∇Ψ∗]− 4e2

m
|Ψ|2A

(1.46)

Consider ∇ψ = ∇ψ∗ = 0, then the second GL equation =⇒ J = −(2e)2

m
|ψ|2A (when

assuming p = 0 ) This is the London equation with q = 2e and |Ψ|2 = ns.

1.6.3 Consequences
The GL-equations predict Type-I and Type-II superconductors.
Definition 1.6.1. The Ginzburg-Landau parameter is defined as

κ =
λ(T )

ξ(T )
(1.47)

where λ(T ) is the penetration depth of a magnetic field into a superconductor, and ξ(T )
is the recovery distance of the order parameter Ψ from the superconducting edge to the
bulk ψ0 (GL coherence length).
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Meissner Mixed
Figure 1.13: Diagram showing a Meissner state (left) and a mixed superconducting state
(right). The black holes represent normal cores/vortices.

The expressions for these are predicted by the GL equations:

λ =

√
mb

4µ0e2|a(T )|
ξ =

√
~2

2m|a(T )|
. (1.48)

The GL equations also predict the Meissner effect, flux trapping and flux quantisation as
we saw earlier.
Remark. The Pippard coherence length is the maximal length from a magnetic perturba-
tion which is experienced by charge carriers and is denoted ξ0. At very low T, ξ → ξ0 and
ξ0 was predicted in BCS theory.

In κ, there are competing energy scales:

• The condensation energy saved on becoming a superconductor: |a2/2b| which is
related to ξ

• The diamagnetic energy cost to expel the magnetic field: B2/2µ0 related to λ

• For a type-I superconductor, κ < 1/
√
2

• For a type-II superconductor, κ > 1/
√
2

Experiments can visualise what a type I and II look like.

Fig. 1.13 shows that the mixed superconducting state is a mix of a pure Meissner state
(shaded) and vortices. Each vortex contains one flux quantum and each has a radius
∼ ξ.

Fig. 1.14(left) above shows the behaviour of magnetic field (B) and order parameter Ψ
close to the surface of a type I superconductor that exists for x > 0. Here the surface
costs energy because there is an extended region for which field is being expelled, but
where the order parameter has not reached its bulk value. The middle figure is the same
plot for a type II superconductor showing that the surface saves energy because there
are regions that have the full bulk value of the order parameter, but are not completely
expelling the magnetic field. This qualitatively accounts for the formation of the mixed
or vortex phase.
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Figure 1.14: .

All the way back in Fig. 1.3a (for Type 1) and Fig. 1.4a, the quantities Hc, Hc1 and Hc2
are mentioned but never defined. Indeed, the GL equations predict them, though we will
use B instead of H:

• Bc is the field associated with the condensation energy.

• Bc1 = µ0Hc1 ≈ Φ0

4πλ2 ln(κ)

• Bc2 = µ0Hc2 ≈ Φ0

2πξ2

For a square vortex of spacing d, Φ0 = Bd2 =⇒ d = (Φ0/B)1/2. For the triangular
vortex, d =

√
2Φ0/

√
3B

1.7 Phase Coherence
The GL order parameter is identical to the macroscopic superconducting wavefunction.
In the bulk, we had ψ0 =

√
ns, a constant. From the GL free energy Eq. (1.45),

Fs = F 0
s +

~2ns

2m

∫ (
∇θ + 2e

~
A

)
d3r, (1.49)

where F 0
s is the ground state free energy and ∇θ represents an energy cost for varia-

tions in phase. In the ground state all superconducting charge carriers have the same
phase. Hence we can do a bit of spontaneous symmetry breaking

Broken Symmetry in superconducting state →
Macroscopic phase

coherence
Rigidity → energy cost of ∇θ

Using Eq. 1.46, in particular the second one, we can use Ψ =
√
ns(r)e

iθ(r) and evaluate
the terms

Ψ∗∇Ψ = (n1/2
s e−iθ)

(
eiθ∇(ns)

1/2 + n1/2
s ∇(eiθ)

)
=

1

2
∇ns + ns∇θ

Ψ∇Ψ∗ =
1

2
∇ns − ns∇θ
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Figure 1.15: Plots of heat capacity against temperature.

Thus, the current density is

J =
2e~
m
ns∇θ −

(2e)2

m
nsA

You always expect a magnetic field to induce a current, so A appearing is fine, but now
what we learn is phase gradients can cause currents. To calculate the flux, we just
integrate both sides around a closed loop

∮
A · dl = Φ =

~
2e

∮
∇θ · dl (1.50)

=⇒ Φ =
Nh

2e
(1.51)

We get flux quantisation, and N ∈ Z+ is called the winding number and θ changes
by 2π around a flux quantum. Note in this formula, it is the regular Planck’s constant h
NOT the reduced constant ~.

1.8 Superfluidity

Superfluids are cool. We focus on Helium-4 (4He). This enters the superfluid state
at 2.17 K. Superfluid flow, flow quantisation and a macroscopic quantum state are all
observed. The specific heat capacity of a superconductor and superfluid are similar and
are shown in Fig. 1.15. This phase transition is evidence for a macroscopic wave function
and order parameter as before

ψ0(r) =
√
n0e

iθ(r), (1.52)

where n0 = |ψ0(r)|2 is the density of particles in the condensed superfluid state. This is
similar to the superconducting version. This order parameter undergoes macroscopic
phase coherence as it becomes a superfluid. Just like with superconductors, we go
through their properties.
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Properties of superfluids

Click any links in this box to get taken to the relevant subsection.
• Superflow: flow of particles with no dissipation =⇒ no viscosity.
• Two-fluid model: viscous drag found in 4He, decreasing with temperature,

suggesting a normal and superfluid coexistence.
• Leads to Two-fluid hydrodynamics to analyse this.
• Flow quantisation
• Has a critical velocity.

1.8.1 Superflow
This is zero viscosity flow. If the phase is constant everywhere, then only the density of
superflow condensate particles is spatially-dependent, which isn’t particularly interesting
because that is expected to happen. So what if θ is spatially-dependent? We can perform
similar analysis to superconductors, but instead of the electric current density, we must
use the quantum-mechanical probability current for free spin-0, neutral particles

J0 =
~

2mi
(ψ∗

0∇ψ0 − ψ0∇ψ∗
0) (1.53)

Remember that n0 = n0(r). This is a standard differentiation exercise, and we get

J0 = n0
~
m
∇θ︸ ︷︷ ︸

velocity

(1.54)

Since J = qv (particle density times velocity), we get the superfluid velocity vs on the
RHS. Now, the consequences of zero viscosity are cool, but can it be observed? If you
had access to your own supercooled 4He, you too can

1. Submerge a stack of rotating disks in superfluid

2. Measure the drag force

3. Using standard fluid dynamics, can get viscosity

4. For 4He, they found non-zero viscosity, meaning not all the helium-4 was a super-
fluid. This suggests there are 2 phases coexisting

Link back to properties of superfluids.

1.8.2 Two-fluid model
Viscosity measurements decreased with temperature in helium-4. Since it was found some
parts of it were superfluid and others normal, we can consider to model the system with
both phases together:

n = ns + nn, (1.55)
where

• n is the total particle density,

• ns is the superfluid particle density, and

• nn is the normal particle density

The variation of these densities is shown in Fig. 1.16 and the original paper by C. J.
Gorter is here. Link back to properties of superfluids.
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Figure 1.16: Variation of the normal (nn) and superfluid (ns) densities as a function of
temperature.
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1.8.3 Two-fluid hydrodynamics
Now we want to study how these 2 fluids interact. Suppose we have a capillary (thin tube).
The superfluid will flow through it without friction, whilst the normal part experiences
friction. In the stacked disks experiment, the normal phase experiences drag whilst the
superfluid stays at rest, so we have two types of current flow.

J = Js + Jn (1.56)

The superfluid carries no entropy (it is a condensate, same thing for superconducting
charge carriers), so the flow of heat is entirely due to the normal (non-superfluid) particles.
Hence we can get a fountain effect by manipulating the flow:

1. Insert a capillary (dense material) into liquid 4He below Tc with the top half of the
capillary exposed outside the fluid.

2. Heat up the capillary tube =⇒ temperature difference ∆T

3. 4He a condensate, must have same chemical potential throughout it.

4. Temperature difference leads to pressure difference, since change in chemical poten-
tial must be 0, so ∆µ = 0 = ∆P − (S/V )∆T .

5. Superfluid can flow, but cannot equalise the temperature difference because it can-
not carry heat.

Link back to properties of superfluids.

1.8.4 Flow quantisation
We saw earlier that vs =

~
m
∇θ. In particular,

Proposition 1.8.1. The flow circulation κ = ~
m
2πN where N ∈ Z around a closed

path

Proof. The flow circulation is defined as

κ =

∮
vs · ds =

~
m

∮
∇θ · dr = ~

m
2πN (1.57)

Link back to properties of superfluids.

1.8.5 Critical velocity
Definition 1.8.1. The critical velocity is the velocity at which superfluidity is lost.

Consider large mass M of fluid flowing down a pipe with velocity v = p/m where p is
the fluid momentum. Suppose there is some roughness on the pipe. This causes particles
to scatter, forming a quasi-particle, and the fluid recoils by momentum q.

By energy conservation, the energy of the fluid after cannot exceed energy before (before
quasiparticle formation) so

p2

2M
≥ (p− q)2

2M
+ Aq
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Figure 1.17: Schematic of Josephson junction.

where A ∈ R is a factor from a dispersion relationship and Aq is the energy of the
quasiparticle. Rearranging the inequality we get

0 ≥ q2

2m
− pq

M
+ Aq (1.58)

=⇒ Aq ≤ vq − q2

2M
(1.59)

M large
=⇒ v ≥ A to form quasiparticle (1.60)

We set A = vcrit, the critical velocity. If the velocity is less than this, the quasiparticle
cannot form, hence there is no friction. This quasiparticle is called a roton and can
be uniquely identified from its dispersion relationship, where it initially displays a linear
dispersion - these are phonons, before attaining a maximum, then a minimum (the roton).
Figures 8 and 9 of Yarnell et al. show experimental validation of rotons (same paper
displayed in lectures). Link back to properties of superfluids.

1.9 Josephson Effect

A typical Josephson junction is shown in Fig. 1.17, which is a dielectric surrounded by 2
superconductors, 1 and 2. Each has their own macroscopic wave function and phase.
Definition 1.9.1. There are two types of Josephson junctions depending on the weak
link.

• If the weak link is a dielectric, it is called SIS junction.

• If the weak link is a normal metal, it is called SNS junction. The weak link is
usually very narrow

Remark. Proximity effect. If you don’t have a weak link, and instead place two super-
conductors nearby, the wavefunction is smeared and weird things happen.

So, superconducting carriers will tunnel through the weak link because they are suf-
ficiently narrow , and because there is a phase difference, needed by GL equations
φ ∼ θ1 − θ2.
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Josephson Equations

Theorem 1.9.1.

I = IJ sin(φ) V =
~
2e

∂φ

∂t
, (1.61)

where I, V are the total current and voltage respectively flowing across the junction.
The equations are called the first and second Josephson equations respectively, or
you may sometimes see them referred to as the Josephson current-phase and
Josephson voltage-phase relationships.

The module presents the handwavy argument, and so will be presented here since it is
examinable. The derivation (from quantum mechanics) is shown in Appendix TODO.

Proof. The current flowing left to right IL→R ∼ eiφ. Similarly, right to left is IR→L ∼ e−iφ.
Thus the total current is the sum, and using complex trig identities we get

I = IJ sinφ. (1.62)

IJ is an empirically-determined prefactor. It depends on the junction, with factors such
as: materials (of both superconductors and the weak link), the temperature, pressure,
defects etc.

Now, let’s attach a voltmeter in parallel, connected to the 2 superconductors. We want
to find the voltage. The wavefunction we propose to be that of electrons in a stationary
state:

Ψ(r, t) = ψ(r)e−iεt/~ (1.63)
where ε is the energy associated with an electron pair. Then if we say ψ1 = |ψ1|eiθ(t) then

−~∂tθ1 = ε1 −~∂tθ2 = ε2 (1.64)

Subtracting the right equation from the left:

∆ε = ε1 − ε2 = ~∂tφ = qV (1.65)

with q = 2e and V the applied voltage. Rearranging gets us the second Josephson
equation.

We can now look at different scenarios of the Josephson junction

1.9.1 DC Josephson effect
We suppose there is no applied voltage.

• Spontaneous supercurrent flows

• Decreasing of IJ as field strength increases, see Fig. 1.18.

1.9.2 AC Josephson effect
Apply a DC voltage across the junction. We can directly integrate the Josephson voltage
relationship:

φ =
2eV

~
t+ φ0. (1.66)
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Figure 1.18: Field dependence of IJ. Reproduced from Prof. Alex Robertson’s lectures.

Substituting this into the Josephson current equation, we get

I = IJ sin(ωJt+ φ0) ωJ =
2eV

~
(1.67)

We get an AC supercurrent from DC voltage! ωJ the Josephson frequency. For
a rough scale, if V ∼ 100µV then ωJ ∼ 50 GHz.

1.9.3 Inverse AC Josephson effect
We now apply a DC voltage V0 AND a radio-frequency AC voltage Vrf cos(ωt), so
V = V0 + Vrf cos(ωt). Doing the same steps as for the AC effect:

φ =

(
2eV0
~

)
t+

2eVrf

~ω
sin(ωt) + φ0 (1.68)

I = IJ sin

[
ωJt+

2eVrf

~ω
sin(ωt) + φ0

]
(1.69)

This is the inverse AC effect, where the phase of the AC supercurrent oscillates. If you
are bothered, you can use Fourier series and Bessel functions and rewrite the expression
to remove the nested sin functions, allowing an easier fit in experiments:

I = IJ

∞∑
n=−∞

(−1)n
[
Jn

(
2eVrf

~ω

)]
sin [(ωJ − nω) t+ φ(0)] , (1.70)

where Jn is a Bessel function of the first kind. Whenever ωJ = nω or 2eVrf = ~ω, we get
DC voltage again.

1.9.4 DC vs Inverse AC
We can compare the 2 effects using an IV characteristic. It is hard to measure the AC
supercurrents for both the AC and Inverse AC effect, they are often in the high GHz
range. It is possible, but measurement of the AC current is no longer ‘loss-less’. Despite
this, we can still measure the DC current IDC for both the DC and inverse AC effects,
which are shown in Fig. 1.19. The amplitude of the Shapiro spikes in Fig. 1.19 is given by
the Bessel functions, and we see that the amplitude decreases generally, but still oscillates.
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Figure 1.19: I−V characteristic for ideal Josephson junctions. Modified from Prof. Alex
Robertson’s lectures.

1.10 Real Josephson Junctions
This is sometimes called the current-source model. A real circuit has resistive, capacitive
and inductive effects, and potentially many more. Figure 1.20 shows the circuit we will
be considering in this section Now, the total current is given by the sum from each
component, that is if you remember your circuit theory

I0 = IJ sin(φ) +
V

R
+ C

dV

dt
(1.71)

Combined with the second Josephson equation, Eq. (1.61), we can use it to form a second-
order ODE in terms of φ

~C
2e

d2φ

dt2
+

~
2eR

dφ

dt
= I0 − IJ sin(φ). (1.72)

Remark. If V = 0 is fixed, we just get the DC Josephson effect.

V 6= 0 but C = 0 We have a first-order autonomous ODE in φ

dφ

dt
=

2eR

~
I0 −

2eRIJ

~
sinφ (1.73)

Plotting this against φ for different values of I0 is shown in Fig. 1.21.

(i) If I0 ≤ IJ, we get a steady-state solution (derivative oscillates between positive and
negative).

(ii) If I0 > IJ: we get a dynamic case, as the derivative is oscillating but always positive,
so there is never a return to steady state.

Thus, we get a step at V0 = 0, not a Shapiro spike. If we then apply a radio-frequency
current on top of the DC, we get Shapiro steps (NOT peaks) whenever 2eV0 = n~ω,
see Fig. 1.22.

29



Figure 1.20: Example circuit with an ideal Josephson junction (JJ), a capacitor and
resistor.

dϕ
dt

ϕ

(i)

(ii)

Figure 1.21: Plot of the first derivative of φ against φ for the case when V 6= 0, C = 0.
There are 2 sub-cases (i) and (ii) to consider.
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Figure 1.22: DC I−V characteristic for an ideal Josephson junction placed in a resistive-
capacitative circuit, for the DC and Inverse AC effect. Modified from Prof. Alex Robert-
son’s lectures.

Figure 1.23: Tilted-washboard potential of a current-biased Josephson junction. Repro-
duced from Ref. [2].

V,C 6= 0 We will rewrite the ODE in a more suggestive form

m
d2φ

dt2
= −∂U

∂φ
− γ

dφ

dt
, (1.74)

where m = ~C/2e, γ = ~/2eR and

U = −I0φ︸ ︷︷ ︸
tilt

− IJ cos(φ)︸ ︷︷ ︸
bumps

(1.75)

This potential is called a tilted-washboard potential, an example is shown in Fig. 1.23.

We again get two situations:

(i) I0 < IJ: steady state solution is possible depending on size of m. But they always
occur when ∂U

∂φ
= 0 =⇒ I0 = IJ sinφ.

(ii) No steady state solution.
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Figure 1.24: Electron-phonon coupling Feynman diagram. ki are the wavevectors of the
electrons, q the phonon momentum and σi the spin of the electrons.

1.11 BCS Theory
This section is an overview of BCS theory. For a more in-depth (mathematical) look,
please see PX453 Advanced Quantum Theory. There are 2 main ideas in BCS theory:

The Isotope Effect: the critical temperature Tc ∝ m−α, where m is the atomic mass
and α ∼ 1/2. This implies phonons are involved in superconductivity.

Cooper pairs:

• Bare electrons repel

• In a metal, the Fermi sea screens quasiparticles, reducing the repulsion.

• Quasiparticles interact via the lattice

This interaction is

• Attractive for quasiparticles within ±~ωD of the Fermi energy EF , where ωD is the
Debye frequency.

• Leads to a bound state - Cooper pairs are bound states of electron pairs as shown
in Fig. 1.24.

The ground state wavefunction of a Cooper pair

ψCP (r1, σ1, r2, σ2) = eikTOT·Rψ(r1 − r2)φ
spin
σ1σ2

, (1.76)

where

• kTOT is the crystal momentum (total wave)

• R is the centre-of-mass of the electrons

• The exponential part describes kinetic motion of the crystal

• ψ(r1 − r2) is the orbital part

• φspin
σ1σ2

is the spin wavefunction

In the ground state ψCP links quasiparticles of momentum ±k and so their sum is kTOT = 0
if it is a symmetric situation (quasiparticles are bosons). However, the quasiparticles are
fermions, so the wavefunction is antisymmetric:

ψCP (r1, σ1, r2, σ2) = −ψCP (r2, σ2, r1, σ1) (1.77)
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so one of the kinetic part or the orbital part must be antisymmetric. Cooper proposed for
the L = 0, s state, the orbital part is symmetric (not entirely true...) so the φspin

σ1σ2
must

be antisymmetric. Therefore,

φspin
σ1σ2

=
1√
2
(|��〉 − |��〉) (1.78)

We can solve the time-independent Schrödinger equation for this state. The derivation is
non-examinable, but the key steps in the derivation are

1. Cast the problem in terms of annihilation and creation operators (for electrons) and
the phonon. See handout or PX453.

2. Get the BCS gap equation at T = 0

∆ = |geff|2
∑
k

∆

2Ek

(1.79)

3. Invoke electron-phonon coupling parameter λ = |geff|2g(EF ) � 1 where g(EF ) is
density of states at the Fermi level

4. ∆ � ~ωD and the BCS approximation (gap not a function of k) so Taylor
expand the result of the integral to first order

From this, we get the BCS gap/Cooper pair binding energy as

ECP = −2~ωDe
−1/λ (1.80)

Remark. The e−1/λ explains why good metals are not superconductors, because they have
a very small λ,and small λ makes ECP very small, i.e. electrons never really interact with
the lattice.

Additionally, ωD ∝ m−1/2 which is necessary for the isotope effect.
Definition 1.11.1. The BCS energy gap is simply ∆ = −ECP

Now, if T 6= 0, the integral solved in the above list is different and more complicated.

1 = λ

∫ ~ωD

0

1

E(ε)
tanh

E(ε)

2kBT
dε, (1.81)

where E(ε) =
√
∆2 + ε2 is measured relative to µ. You can try to do this by hand (not

examinable), but the key point is the energy gap, whilst independent of k, is dependent
on temperature:

• It roughly looks like the ns(T ) curve in Fig. 1.16.

• The size of ∆ depends on the number of superconducting charge carriers.

• So superconductivity is a cooperative effect

Evaluating the new integral as ∆ → 0 and Taylor expanding around Tc

kBTc = 1.13~ωDe
−1/λ (1.82)

• Can enhance Tcby increasing λ or ωD

• Since λ is usually small (λ � 1 usually), BCS theory predicts upper limit on Tcto
be 30 - 40 Kelvin.

Combining ∆ at 0 K, we get

2∆(T = 0) = 3.52kBTc. (1.83)
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1.11.1 Evidence for the gap
• Heat capacity C

– Cooper pairs don’t contribute

– Caused entirely by normal carriers excited above ∆

– Process is more or less random/stochastic, so C ∝ e−∆/kBT

Experiments and theory both look like Fig. 1.15 (right). Further verification comes
from plotting lnC against 1/T - we get a linear plot with negative gradient, and
you find ∆ from that

• Optical absorption

– Only photons with energy hf > ∆ can be absorbed by the superconductor

– For pure elements, typical 2∆ ∼ 2 meV, so f ∼ 10 cm−1, which is far-infrared.

Tc
T

Re�lected

intensity

(arb. units)

Figure 1.25: Relative intensity plot for a typical pure element in superconducting state.

• Electron tunnelling: Suppose we have a normal metal placed next to a supercon-
ductor with a surface barrier between them. Observations show

– quasiparticles, not pairs, tunnel into and out of the superconductor

– There are no quasiparticle states in the superconductor within ∆ of EF

Experimentally, a plot of the conductance dI/dV against applied bias voltage V is
done, see Fig. 1.26.

• Photoemission spectroscopy - similar plots to absorption

• Andreev reflections - suppose you place a metal and superconductor directly next
to each other. You can get reflections where an incident electron is at the interface,
but what is reflected back into the metal is a hole (opposite spin, same momentum)
whilst the superconductor gains a charge of 2e. This only occurs at energies less
than ∆.

1.12 Unconventional Superconductors and Beyond
Unconventional superconductors are those whose behaviours cannot be predicted or ex-
plained by BCS theory. For example, high-temperature superconductors cannot be ex-
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plained by BCS theory, since it predicts a limit of around 40 K. Cuprates for example,
have a max Tc∼ 150 K.

That being said, unconventional superconductors still exhibit

• Electron pairing

• zero resistance

• Meissner effect

• Enter mixed state with vortices for higher B fields than conventional superconduc-
tors.

1.12.1 Why are they unconventional?
There are possible explanations (which haven’t theoretically gone far) with some obser-
vations - maybe one of you guys can figure it out?

• New pairing mechanism: in BCS theory we only assumed L = 0 state for the
orbital wavefunction ψ(r1−r2), but we could have higher angular momentum states:
Observations back this, with a generalised phase diagram of superconductivity to
involve antiferromagnetism (AFM), such as in Fig. 1.28.3

1.12.2 Helium-3
Helium is unique because it is unable to solidify at T = 0 at standard pressure. There
are two reasons for this

• Low atomic mass4 and high zero-point motion

The zero-point energy E0 = 1.5~ω0, where ω0 is the vibrational frequency of an
atom displaced from equilibrium, and ω0 ∝ m−1/2

• Weak attractive interaction due to high symmetry, so there are very weak van-der-
Waals interactions.

+Δ-Δ V

dI
dV

Figure 1.26: Graph of conductance against applied bias voltage V .

3Some examples of antiferromagnetism in superconductors in Bazarnik et. al. and Buzdin et. al.
4Of course, hydrogen with a lower atomic mass does solidify at 14 K and standard pressure.
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Figure 1.27: Depiction of different angular momentum states. Screenshot from Prof. Alex
Robertson’s lectures.

P

T

Metal

SC

AFM

Figure 1.28: Typical phase diagram of unconventional superconductor.

The Lennard-Jones potential

V (r) = ε

(
d12

r12
− 2

d6

r6

)
(1.84)

where ε is the depth of the potential and d the position of the potential, then He
and Ne are similar but Ne is more attractive. What do the Cooper pairs do? In
3He, they are thought to form their own composite bosons, but if this is the case,
the crystal lattice and thus phonons do not mediate the interaction. To allow vdW,
we require L > 0, thus definitely making 3He unconventional.

The Phase Diagram

There are three superfluid states in helium-3, with an intricate phase diagram as in
Fig. 1.29. If there is no B field, then there are 2 phases

• A phase: described by ABM (Anderson-Brinkman-Morel) theory and high pressures

• B phase: Balian-Werthamer state (BW) theory.

If we turn on a magnetic field, the A phase splits:

• A1 phase: only with B-field
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Figure 1.29: Helium-3 phase diagram, reproduced from The Superfluid Phases of Helium
3 Dieter Vollhardt and Peter Wölfle.

• A1 phase: same to ABW just with the field.

• B2 phase: same to B phase but the field is turned on

All of these phases consist of Cooper pairs of 3He quasiparticles with pairing wavefunction
satisfying S = 1, L = 1 - this is a spin-triplet p-wave pairing . Contrast this to BCS
superconductors, which are spin-singlet, s-wave pairing.

For S = 1, there are 3 allowed states mS = −1,+1, 0, which correspond to the 3 states:

|��〉 |��〉 1√
2
(|��〉+ |��〉) (1.85)

Therefore, the pair wavefunction is a linear superposition of all 3:

Ψ = ψ1,+(k) |��〉+ ψ1,0 (k) (|��〉+ |��〉)
+ ψ1,− |��〉

(1.86)

where ψ1,+, ψ1,0, ψ1,− : R3 → C are complex-valued amplitudes. However, the pairing
wavefunction should also account for L = 1 =⇒ mL = 0 ± 1 =⇒ 9 substitutes.
This makes the wavefunction highly anisotropic, leading to a complex phase diagram,
a different beast to BCS entirely.
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Chapter 2

Optical Properties

This chapter of the module studies light-matter interaction. Studying this has led to
numerous advancements

• Widgets (illumination, lasers, sensors, internet etc.)

• Probing condensed matter: x-ray diffraction, dielectrics, bandstructures (ARPES),
ultrafast dynamics

• Fundamental physics: QM, spontaneous symmetry breaking, renormalisation, topo-
logical variants, emergent behaviour

All of these are testable (in the experimental sense, though some of these will be exam-
inable!).

2.1 Optical Processes
A rundown of different optical processes is shown in Fig. 2.1
Definition 2.1.1. The refractive index n is a ratio of the speed of light in vacuum, c,
to the speed of light in a material v, such that n = c/v. In particular, n ≥ 1.
Definition 2.1.2. Scattering is the process of light changing direction. Elastic scat-
tering is when λin = λout, i.e. wavelength unchanged. Inelastic scattering is when
they are not equal.
Definition 2.1.3. Luminescence is the emission of light by excited states of atoms or
defects in matter. Excited states may be produced by incident light, called photoluri-
nescence (PL).
Definition 2.1.4. Fluorescence is a longer-lived excited state, and so there is a delay
between ∆t between excitation and light emission. Fluorescence often emits a lower
wavelength of light but not always.
Definition 2.1.5. The absorption coefficient α describes how far into a material light
of a particular wavelength can travel before being absorbed.
Lemma 2.1.1. Beer’s law describes optical absorption using α. Let I(z) be the optical
power per unit area. Then

I = I0e
−αz, (2.1)

assuming the material is aligned along z. Also, I ∝ E2 where E = |E| is the magnitude
of the electric field of light, so

E = E0e
−αz/2 (2.2)
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Figure 2.1: A schematic of optical processes.

2.1.1 Classical vs Quantum

In classical physics, transmission, reflection, absorption and refraction were all describable
using a complex refractive index

ñ = n+ iκ (2.3)

where n is the regular refractive index as in Definition 2.1.1 and κ is the extinction
coefficient, which is related to the attenuation of light through an optical medium, and
therefore is related to α. For the rest of this chapter, the real part of ñ is denoted as n or
<ñ. The imaginary component is denoted just κ or =ñ

The Stokes shift is a change of λ of scattered light in (photo-)luminescence and requires
QM to explain it. A sudden change in wavelength ∆λ implies some quantum of energy
∆Ephoton to satisfy conservation of energy. But a quantum of energy could be many
things: energy levels in atoms, molecules, defects; or energetic quasiparticles like phonons
and plasmons.
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2.1.2 Complex refractive index
Electromagnetic radiation is characterised by Maxwell’s equations. In classical physics,
light is thought of as a wave, and this leads to the wave equation

∂2E

∂z2
=

1

c2
∂2E

∂t2
(2.4)

where E = E(z, t) = E0e
i(kz−ωt) is the electric field propagating along z. In a non-vacuum

medium, both the permittivity εr and permeability µr scale by relative factors:
ε0 → εr = ε0ε̃r µ0 → µr = µ0µ̃r (2.5)

where ε̃r and µ̃r are the relative permittivity and permeability respectively. For this
section, we will assume µ̃r = 1, that the material is non-magnetic at optical frequencies.
The speed of light in the material then changes

v =
1

√
ε0µ0

→ 1
√
εrµ0

(2.6)

Remark. Of course, if µ̃r 6= 1, then µ0 → µr.

Now, <ñ = n = c/v =
√
ε̃r =

√
ε̃r(ω). Now, what actually is ε̃r? It describes how much

the electric field is weakened compared to the strength of true vacuum. It is therefore a
material property and has to be experimentally determined for each material. ˜ε(ω)r de-
pends on how the electric charges in the material react to the oscillating electric field of
light, and there are multiple responses

• For a bound charge, we get polarisation. You can see this in a dipole

• For a free charge, you can either get oscillations (plasmons) or absorption. The
latter has both a classical and QM treatment.

We know that Eq. (2.3) will lead to a dampening of E(z), so
E = E0e

i(kz−ωt),

where ω = vk ⇐⇒ k = ω
c
(n+ iκ) =

√
ε̃r. Thus our expression for E(z) generalises to

E(z) = E0 exp
[
−κωz

c

]
exp

[
iω

(nz
c

− t
)]

(2.7)

• The first exponential exp [−κωz/c] is an absorption term. Referring back to
Eq. (2.2), we see that

α =
4πκ

λ
(2.8)

where λ is the wavelength of light in the medium.

• The second exponential is a phase shift.

Therefore, ε̃r must be complex and we write it as ε̃r = ε1 + iε2. Expanding both sides:
ε̃r = (n+ iκ)2 = n2 + κ2 − 2inκ = ε1 + iε2. (2.9)

Equating coefficients,
ε1 = n2 − κ2 ε2 = 2nκ (2.10)

Since n, κ can be rewritten in terms of ω or λ, we can completely determine ε1 and ε2 as
functions of these quantities too. We sometimes call ε̃r the dielectric function in this
context.
Definition 2.1.6. The weakly absorbing limit is defined as a medium where n � κ.
Here, n ∼

√
ε̃r and κ = ε2/2n, then α = 2πε2/nλ. Namely, <ε̃r determines refractive

index and =ε̃r determines the absorption coefficient.
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2.2 Calculating the dielectric function
There are multiple ways to find ε̃r = ε1 + iε2

1. Pure classical model: EM theory plus dipole oscillator model

2. Semiclassical model: use QM to define energy levels, excitations, quasiparticles and
model light classically.

3. Sidestep ε̃r by treating light and matter with QM.

In this section, we will focus on method 1.

Assumptions:

• Light is an oscillating electric field (ignore magnetic component)

• Charges in condensed matter respond by oscillating

The most general method is everyone’s favourite: the classical dipole oscillator shown in
Fig. 2.2. The simplified atom model has a resonant frequency ω0

Figure 2.2: Classical dipole oscillator model. Screenshot from Prof. Gavin Bell’s lectures.

ω0 =

√
k′

µ
(2.11)

where k′ is the spring constant (bond stiffness) and µ is the reduced mass, defined as
Definition 2.2.1. The reduced mass is the effective mass that a multi-body system
has as if it was behaving as one mass. For two-bodies (nucleus and electron), it is defined
as

µ =
1

m−1
n +m−1

e
(2.12)

Since mn � me, µ ∼ me.

Now, if we apply an electric field E(t) = E0e
−iωt, we then solve the inhomogeneous

second-order ODE for the classical damped oscillator:

me
d2x

dt2
+meγ

dx

dt
+meω

2
0x = −eE (2.13)

• γ is the damping factor and the entire term meγdx/dt is the drag force.

• meω
2
0x is the spring force.
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• med
2x/dt2 is the resultant force.

• The entire ODE is a generalised f = ma situation.

We try the solution x(t) = x̃0e
−iωt1

−meω
2x̃0 − imeγωx̃0 +meω

2
0x̃0 = −eE0. (2.14)

Rearranging for x̃0 gives
x̃0 =

−eE0

me (ω2
0 − ω2)− iγωme

. (2.15)

Definition 2.2.2. The dipole moment p(t) = qr(t) where r(t) is the position. Note
this is generally a vector quantity.

Indeed, our p(t) = −ex̃0e−iωt. Now, a real material is usually not made up of a single
oscillator, but many - let’s suppose there are N oscillators per unit volume. Then the
bulk polarisation P (t) is

P (t) = p(t)N =
Ne2

me

1

ω2
0 − ω2 − iγω

E0e
−iωt (2.16)

From electromagnetism, we know
Lemma 2.2.1. The displacement field D = ε0E + P = ε0εrE. P here is the total
polarisation.

Indeed, we will break down the total polarisation into two parts: static and dynamic:

P = ε0χE︸ ︷︷ ︸
static

+ P(t)︸︷︷︸
dynamic

, (2.17)

and χ is the electric susceptibility. We substitute Eq. (2.17) into the expression inside
Lemma 2.2.1, and rearrange for P (t)

ε0E(1 + χ) +P(t) = ε0ε̃rE

P (t) = ε̃rε0E − ε0E(1 + χ)
(2.18)

Now, we equate this to Eq. (2.16). Notice in Eq. (2.18), we can factor out ε0E. But then
this factor cancels with the same factor in Eq. (2.16). Hence, rearranging for ε̃r gives

ε̃r = 1 + χ+
Ne2

ε0me

1

ω2
0 − ω2 − iγω

(2.19)

It is now the job to find ε1 and ε2. This can be done by multiplying the fraction term by

ω2
0 − ω2 + iγω

ω2
0 − ω2 + iγω

to cancel out imaginary components in the denominator, expanding and rearranging. If
you do that, you will get

ε1 = 1 + χ+
Ne2

ε0me

ω0
2 − ω2

(ω0
2 − ω2)2 + (γω)2

ε2 =
Ne2

ε0me

γω

(ω0
2 − ω2)2 + (γω)2

(2.20)

1You may recall that this ODE has 2 solutions with 2 different frequencies. We brush this under the
rug for the time being.
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Figure 2.3: Example plot of n and α against ω from the expressions derived above.
Screenshot from Prof. Gavin Bell’s lectures because I couldn’t get a nice enough looking
one in Desmos or Tikz with good parameters.

Behaviour of ε_1, ε_2

• ε2 peaks at ω = ω0 with FWHM of γ - maximum absorption.
• ε1 steadily increases when approaching ω0, drops sharply and then climbs

again. As ω → 0, ε1 → 1 + χ+∆ but as ω → ∞, ε1 → 1 + χ. Here, ∆ ∈ R.
• This type of model is sometimes called a Lorentzian harmonic oscillator.

Now, real materials are not just made up of many copies of a single oscillator, but they
are made up of multiple types of oscillators, corresponding to different mechanisms, each
with some ‘oscillator strength’ fj. Since this is just a prefactor, the expressions for ε1, ε2
immediately generalise:

ε1 = 1 +
∑
j

Ne2

ε0me

fj(ω
2
j − ω2)(

ω2
j − ω2

)2
+ (γjω)2

ε2 =
∑
j

Ne2

ε0me

fjγjω(
ω2
j − ω2

)2
+ (γjω)2

(2.21)

The χ is constructed from all the low-frequency limits of the oscillator tails, that is all
of the ∆j. Using Eq. (2.10), we can plot the behaviour of n and α and use the weakly
absorbing limit, Definition 2.1.6. Example graphs look like in Fig. ??. Material examples:
The first example that could be described by this model is uric acid, shown in Fig. 2.4

• Uric acid has 3 clear peaks due to electronic transitions in and around the hetero-
cyclic ring

• Strong chance to be modelled successfully by oscillators

• The FWHM is about 25 nm, the question is which γj does that correspond to?
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Figure 2.4: Uric acid molecule (left) and its absorption spectrum.

Figure 2.5: Refractive index (top) and extinction coefficient (bottom) plot against fre-
quency for silica glass, SiO2.
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Another example is silica glass, whose n and κ is shown in Fig. 2.5.

• n→ 1 at higher frequencies, this is good for our model

• Before 1014 Hz, there are 2 strong ‘wiggles’ in n which have peaks in κ, corresponding
to vibrational modes

• There is an additional peak at 2 × 1015 Hz but this is an absorption edge rather
than a peak - our model doesn’t have absorption edges and this peak occurs due to
interband electronic absorption

• Minor peaks in κ around 1016, 1017 Hz but no corresponding peak in n - core
electron transitions. Our model doesn’t have this feature either

• n� κ except near absorption peaks, good for the weakly absorbing limit we used

• Transparency across the visible range, where κ = 0

2.2.1 Refractive index
Suppose you have 2 optical materials at an interface with refractive index n1, n2 and light
is incident from medium 1. In general, there will be both transmission and reflection. The
proportion of light that goes into each mode is given by the transmission and reflection
coefficients T,R respectively. By conservation of energy

R + T = 1 (2.22)

and in particular,

R =

∣∣∣∣n1 − n2

n1 + n2

∣∣∣∣2 (2.23)

Now, n = c/v but n < 1 is allowed, implying v > c. This seems like a dilemma, but
we need to be careful about which velocity we are considering. Light travels in wave
packets so the velocity of information transfer is the group velocity

vg =
∂ω

∂k
(2.24)

and not the phase velocity ω/k. We now aim to find an expression for vg in terms of the
refractive index:

v =
ω

k
=
c

n
; dω =

∂ω

dk
dk +

∂ω

∂n
dn; ω =

kc

n
∂ω

∂k
=
c

n
;

∂ω

∂n
= −kc

n2
; dω =

c

n
dk − kc

n2
dn

vg =
dω

dk
=
c

n
− kc

n2

dn

dk
= v

(
1− k

n

dn

dk

)
vg = v

(
1− ωn

cn

dn

dω

c

n

)
= v

(
1− ω

n

dn

dω

)
(2.25)

Both n, dn/dω usually positive in the visible part of the spectrum, so vg < v.

Another property of n is that it changes across the visible spectrum and is affected by
the tails of the phonon and electron absorption features. We can see this through Snell’s
law

sin θ1
sin θ2

=
n2

n1

=
v1
v2

(2.26)

with n2 > n1, v2 < v1.
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Since n = n(λ) (because v = v(λ)), different wavelengths are refracted by different
amounts. In particular, shorter-wavelength light is refracted more strongly than
longer-wavelengths. This is called dispersion.

There is also the notion of a time domain with n. A pulse of light containing multiple
frequencies will spread out in time, i.e. diverge. This is an important phenomenon to
take into account for fibre-optic cables and picosecond pulses for data storage.

A pulse is a wave packet of light, so it is characterised by a group velocity vg. A fractional
change 1/vg with wavelength λ disperses travel times τ . We would like the ‘spread time’
∆τ as a function of the wavelength spread ∆λ

1

vy
=
dk

dω
=

d

dω

[
ω
n(ω)

c

]
=
n(ω)

c
+
u

c

dn(ω)

dω
(2.27)

τ =
L

vg
=
L

c

[
n(ω) + ω

dn

dω

]
(2.28)

ω = 2πc/λ:

ω
dn(ω)

dω
=

2πc

dλ

dn

dλ

(
−2πc

ω2

)
=

−λ2

λ

dn

dλ
= −λdn(λ)

dλ
(2.29)

τ =
L

c

[
n(λ)− λ

dn(λ)

dλ

]
, (2.30)

The square brackets term can be thought of as a group refractive index. Now,

∆τ =
dτ

dλ
∆λ (2.31)

dτ

dλ
=
L

c

[
dn(λ)

dλ
− λ

d2n(λ)

dλ2
− dn(λ)

dλ

]
(2.32)

giving

∆τ = L|D|∆λ |D| = λ

c

d2n

dλ2
, (2.33)

where D is the material dispersion parameter having units of (ps nm−1 km−1). This
can be interpreted as the picosecond-time dispersion for every nanometre-change in wave-
length over a km-distance.

Since fibre-optic cables are many kilometres long, it is an important aspect to consider,
with sub-picosecond data pulses. An example graph of dn/dλ is shown in

2.3 Band structure
Atoms have discrete electronic states (1s, 2p etc.), each with a well-defined EB, called the
binding energy, the energy needed to remove an electron from that energy level.

Electronic states with multiple angular momentum values like 3p, also have a spin-orbit
splitting energy ∆. For p-states, the total angular momentum j = 1/2, 3/2; for d-states
it is j = 3/2, 5/2 etc. The pattern of EB’s across elements inspired the development of
QM and observations led to things such as Moseley’s law,√

f ∝ Z (2.34)
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silica

D 0 @ 1300nm

Figure 2.6: Graph of dn/dλ against λ for silica.

where f is the frequency of emitted x-ray photon and Z the atomic number.

In a general condensed matter system, the outer (valence) electrons interact with each
other which forms new quantum states. In this section, we will think about bulk, crys-
talline materials. We are thus excluding

• glasses (they are amorphous)

• materials with long-range order

• molecules or nanostructures

In a bulk, crystalline material, the core levels are not involved in bonding and thus do
not interact to form new states. The valence levels do, and now our job is to figure out
how they mix.

A crystal is nothing more than a periodic arrangement of atoms. In 3D space, each
atom’s position can be described by a lattice vector R

~R = n1~a+ n2
~b+ n3~c, (2.35)

where n1, n2, n3 ∈ Z and ~a,~b,~c ∈ R1,3 defines the unit cell of the crystal. Please see
PX385 if you need a recap of unit cells, but it is not necessary right now.

Because crystals are periodic, translating by R will get you to the same place relative to
the entire universe - in particular, you will get identical local environment.

V (~r + ~R) = V (~r) ⇒ |ψ(~r + ~n)|2 = |ψ(~r)|2 (2.36)

ψ(~r + ~R) = ψ(~r)ei
~k·~R (2.37)

This is nothing more than Bloch’s theorem, which states that potential of a periodic
system is equal to the product of a periodic function ψ(~r) times a plane wave.

So to actually work out the quantum states? Using perturbation theory (every under-
graduate’s favourite) we can get approximate solutions.

• Nearly-free electron

• Tight binding
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Figure 2.7: Computationally predicted bandstructure of a single unit cell of two phases
of Na-K-Sb, alsigned at their respective valence band maxima. Reproduced from C. Xu
et al [7].

• k · p model

• density-functional theory (great for ground state solutions, also my research!)

• many-body perturbation theory (excited states analysis)

2.3.1 Recap: interpreting band structures

Brief recap of bandstructures. These are plots of energy along paths through k-space.
These paths are denoted by various letters like in Fig. 2.7. These letters are called high-
symmetry points and correspond to special points in the Brillouin Zone.

In crystal theory, there is an underlying group theory of operations - rotations, reflections
and translations, which you can do to certain crystal structures that leave particular
points invariant - the classification of these crystals are called space groups, which you
do not need to know about for the exam.

The invariant points are given special letters. Typically:

• Γ− (0, 0, 0)

• X − (1/2, 0, 1/2)

• L− (1/2, 1/2, 1/2)

Note: these letters (other than Γ) may be slightly different depending on the order of the
reciprocal lattice vectors, the crystal structure and literature.

If a path through the BZ has the potential for occupation (or has occupied states), a line
will be plotted. At these lines, g(E), the density of states, is definitely not 0. A point
in the bandstructure tells you where in the BZ you are and how much energy you are
expected to have.

it is important to note you cannot directly extract which electrons in which orbitals
correspond to each location in the BZ just by looking - you need to calculate the partial
density of states to do that.
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2.3.2 Tight-binding model
To make the maths easier, we go back to 1D and assume only nearest-neighbour (NN)
interactions. We assume the atoms are spaced by a distance a:

ψ(k + x) = ψ(x)eikx; x = ±na
= ψ(x)e±ikna

(2.38)

The total wavefunction is a linear superposition of all wavefunctions:

Φ(x) ∝
∑
M

ψ(k +mka)eimka (2.39)

where m is every allowed n, i..e the distance of the interaction. Since we are assuming
NN interactions, m = ±1 (the neighbour to the left and right). A typical Φ is then

Φ(x) = e−ikaφ(x− a) + eikaφ(x+ a) + φ(x) (2.40)

and this state satisfies the time-independent Schrödinger equation

Ĥφ = Eφ (2.41)

To make writing the following maths easier, we use Dirac notation, so φ(x) → |x〉. Then

Ĥ |x〉 = E0 |x〉 =⇒ 〈x|H|x〉 = E0 (2.42)

Rewriting Eq. (2.40) gives

e−ika 〈x|Ĥ|x− a〉+ eika 〈x|Ĥ|x+ a〉 = Ek (2.43)
Ek = E0 + e−ika(−t) + eika(t) (2.44)

t = 〈x|Ĥ|x+ a〉 , (2.45)

where t is the overlap integral. We can combine the exponential terms into a trigono-
metric term, leading us to

Ek = E0 − 2t cos(ka) (2.46)
Definition 2.3.1. The band width is the difference between the peaks and the troughs.

In the tight-binding case, the amplitudes are at ±2t, so the band width is 4t. Additionally,
Definition 2.3.2. The Brillouin zone (BZ) is a unit cell in reciprocal (wavevector)
space

For the tight-binding model in 1D, it is the interval [−π/a, π/a].
Definition 2.3.3. The energy function E = E(~k) is the band structure. It tells you
where states are distributed in the BZ.

Since t is the overlap, stringer NN interactions lead to a larger band width.

Near k = 0, we can perform a Taylor expansion

E(E) = E0 − 2t

[
1− (ka)2

2
+ · · · ·

]
E(k) ' E0 − 2t+ ta2k2

(2.47)

and we see we get parabolic dispersion around k = 0.
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2.3.3 Tight-binding vs. free electron
In the free-electron model, the energy function is

E =
~2k2

2me

∂2E

∂k2
=

~2

me

(2.48)

the electron mass is then
me = ~2 =

(
∂2E

∂k2

)−1

(2.49)

However, if we repeat the same calculation for the tight-binding model above:

E(L) = t0 − 2E + ta2K2 ∂E

∂K
= 2ta2K

∂2E

∂K2
= 2ta2 (2.50)

Then our effective mass is
m∗ =

~2

2ta2
(2.51)

In particular, the ‘mass’ of the particle in a 1D crystal depends strongly on the separation
between the atoms, and behaves like a free electron except with a mass m∗. This is the
general rule in a 1D, 2D or 3D crystal and are quasiparticles.

The overlap integral t encodes lots of hidden information

• If we have two s-orbitals nearby, the electrons are distributed roughly equally around
the centre, meaning each atom has a cloud of electrons, which thus repel each other
and t < 0

• If we have two p-orbitals interacting, well the electrons can move about between the
lobes, thus at any moment there can be a net dipole moment across an atom. This
means the atom has a slight locally positive and negative charge, which influences
nearby atoms. Thus there will be minor attraction and t > 0.

The quasiparticle electron has a momentum

p ∝ ∂E

∂k
(2.52)

For our bandstructure, we have p = 0 at k = 0,±π/a - the BZ boundary. This produces
standing-wave-like solutions, so our NNTB model is very simple.

In reality, real bandstructure are complicated because there are many interactions. In
Fig. 2.7,

2.3.4 Nearly-free electron model
This time, we start with with delocalised free electrons and apply a perturbation arising
from the crystal potential V (~r) = V (~r + ~R). To again make the maths easier, we look at
it in 1D (you only need to replace everything with vector operations later)

Ĥ = Ĥ0 + V (x) (2.53)

Ĥ0 =
p̂2

2m
=

~2

2m

∂2

∂x2
(2.54)

V (x) =
∑
j

Vje
iqjx (2.55)
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|ψ(x)|2

|ψ(x)|2 + Vj

V (x)

Figure 2.8: Example of a perturbed electron wave in a lattice.

We will skip over all the long perturbation theory calculation. It tells us that the final
energy is simply the ground state energy plus or minus the perturbation energy, that is if
E(k) = ~2k2/2m is the free electron energy, then E(k) is perturbed by ±Vj when k = qj.

When k = qj, the electron wave has the same periodicity as the periodicity at one point in
the lattice. This means that |ψ|2 can be in-phase or out-of-phase with Vj(x) as shown
in Fig. 2.8. Whether the wave becomes in-phase of out-of-phase, that is |ψ|2 is ±Vj in
energy depends on whether Vj is repulsive or attractive.

When k 6= qj, there is no extended phase relation to V (x) so the electron does not ‘see’
the potential on average, leading to a free-electron-like dispersion.

Returning back to 3D, the free electron dispersion (Fermi surface) has spherical symmetry
about ~k = 0. At this constant energy isosurface, the energy is E0 and

E0 =
~2|~k|2

2me

⇐⇒ |~k| = 1

~
√

2meE0 (2.56)

in all directions. However, as ~k → ~qj, the sphere becomes distorted.

2.3.5 Density Functional Theory (DFT)
DFT is based on the assumption that any property of a many electron system can be
obtained as a functional of its ground state charge density ρ = ρ(~r). The existence of
such a potential and its accuracy is derived by the Hohenburg-Kohn (HK) theorems; DFT
now is performed by the Kohn-Sham scheme where a many-body system is broken down
into a system of many time-independent, non-interacting Kohn-Sham orbitals φi, such
that

ρ(~r) =
∑

i=occupied

e|φi(~r)|2 ETOT = E[ρ(~r)] (2.57)

The total energy is a unique functional, of ρ (HK theorems). However, once you obtain
this, you will be able to calculate any ground state propertyn you wish.

But, there is a big problem: you need an approximate way to treat electron-electron
interactions, and these approximations can give big errors, especially in semiconductor
bandgaps.

Additionally, DFT is very computationally expensive compared to tight-binding or nearly-
free electron models. It is difficult to scale from a few atoms (like, say 10) to a nanos-
tructures or bulk crystals with hundreds or even more.
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• Indeed, this procedure can be reduced down to a lot of linear algebra.

• However, the matrices and vectors are often ridiculously large

• You also need to perform diagonalisation routines, matrix inversion etc., which even
on very optimised implementations, still scaled poorly with the number of atoms

• Ignoring linear-scaling DFT, which is very nifty, most optimised DFT implementa-
tions have a time-complexity scaling as the number of atoms, cubed.

So for optical materials we prefer TB-type approaches.2

Another popular technique is ~k · ~p. If we know E(~k0) at some point ~k0, we can calculate
E(~k0+~k). This might seem like it wouldn’t work, but the underlying mechanism is again
perturbation theory, where by you treat the +~k term as coming from some perturbing
Hamiltonian H~k.

• This can be quite accurate using semi-empirical parameters

• Simplest model is the ‘2-band’ model featuring 1 CB and 1 VB

• More complex models use more bands

• Works for nanostructures

2.3.6 Group III-IV semiconductors
These are compounds formed from a combination of

• Group 13 elements (metals): Al, Ga, In

• Group 15 elements (non-metals and semi-metals): N, P, As, Sb

and make up a lot of optoelectronic (light-interacting electronics) devices. Examples are
GaN, GaAs, InSb, InP, Al0.7Ga0.3As etc. We can manipulate the materials and their
doping to engineer bandgaps Eg of different sizes, for different uses:

• GaN: Eg = 3.4 eV - wide-gap; blue LEDS and lighting

• GaAs: Eg = 1.4 eV - medium gap; red or near infrared; solar panels

• InSb: Eg = 0.17 eV - narrow gap; mid-infrared; electron source

Now, consider the electronic structure of Ga and As:

Ga : [Ar]3d104s24p1 As : [Ar]3d104s24p3 (2.58)

Now if you combine them together, all the valence electrons are in the n = 4 energy level,
that is the all the 4s, 4p electrons, giving 8 valence electrons - the orbitals combine to
effectively give 4 identical hybrid orbitals. This process is sp3 hybridisation. GaAs has a
cubic unit cell, but the atoms within are tetrahedrally-bonded as in Fig. 2.9.

These are 4 covalent bonds with a minor amount of ionic character. Next, is how the
electrons organise themselves. Since the orbitals merge, this means the electrons must
rearrange into a new electronic configuration. Unfortunately, bonding is not perfect and
2 types of orbitals form from hybridisation

2As in Ref. [7], you may apply excited state calculations on top of DFT ground states, like GW, to
correct the bandgaps. This is still an approximation, but it gets us a lot of the way there,
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Ga

As

AsAs

As

Figure 2.9: (left) Bonding for GaAs. (right) Energy-level diagram for sp3-hybridised GaAs
reproduced from Ref. [5].

E

g(E)

EF

VB

CB

Band gap

Figure 2.10: Density of states for GaAs.

Definition 2.3.4. An antibonding orbital is a molecular orbital which weakens the
molecular bond and increases the energy (decreasing stability) of the molecule.

As you can imagine then, the polar opposite is
Definition 2.3.5. A bonding orbital is a molecular orbital which increases the strength
the molecular bond.

Now, you cannot have identical quantum states by Pauli exclusion, we cannot have 2
identical 4s2 orbitals, so the 4s2 orbital actually splits into a lower component that remains
in the VB and an upper component in the CB in the sp3-hybridised molecule. Hence, the
other 4s2 from the other atom are promoted into p-orbitals since there are empty states
there. Again though, the same logic applies. The 4p state again splits such that the
now 6 electrons are lower in energy (but still above the new 4s2) and an additional new
unoccupied band in the CB. This is captured in Fig. 2.9(right). Hence, the antibonding
orbitals lie in the CB and bonding ones in the VB.

Experimentally, this can be seen in the density of states (DOS) which will show a gap
or zero between the CB and VB as in Fig. 2.10.

The band structure near Γ is shown in Fig. 2.11 for GaAs and InSb.

54



Figure 2.11: Bandstructure of (left) GaAs and (right) InSb, around the high-symmetry
point Γ. Images reproduced without modification from this page for GaAs and this page
for InSb.

• Light holes have low effective masses. If you imagine them as a lightweight ball,
when you throw them, their trajectory is sharper. In this case, the light hole is a
lightweight ball through the BZ.

• Similar for heavy holes - they have heavy effective mass so traverse the BZ in a
broader fashion

• the split-off band is due to spin-orbit coupling

• The CB in GaAs is very parabolic but in InSb, it is not very parabolic.

For InSb, the VB is well described by a 2-band ~k · ~p ‘Kane’ model. We will compare the
validity of a parabolic isotropic band vs Kane model for describing the dispersion around
Γ.

We expand E(~k) in a power series

E(k) = a1k
2 + a2k

4 + a3k
6 + . . . (2.59)

Remark. We assume even powers only because around Γ, the dispersion looks like an even
function.

For a parabolic isotropic band, a1~2/2m∗ and a2 = a3 = . . . = 0. This is expected from
the name alone. In the Kane model,

~2k2

2m∗ = E(1 + αE), (2.60)

where α = E−1
g for a 2-band ~k · ~p model. Then the dispersion is

E(k) =
−Eg

2
+

[(
Eg

2

)2

+ Eg
~2k2

2m∗
e

]1/2

(2.61)

The Kane model is valid when the energy is less than about 4Eg. Without derivation, we
state the result for the density of states g(E)

g(E) =
2

(2π)D

∫
S

ds

|∇E(~k)|
(2.62)
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Figure 2.12: DOS for the parabolic (dashed) and Kane models (solid). The solid lines
will continue down to zero. Reproduced from this site without modification.

where D is the number of spatial dimensions and S is a constant energy surface in ~k space.
This expression is evaluated for the isotropic (Eq. (2.63)), isotropic parabolic (Eq. (2.64))
and Kane models (Eq. (2.65)):

giso(k) =
k2

π2

(
∂E

∂K

)−1

(2.63)

gpara(E) =
1

2π2

(
2m∗

e

~2

)3/2

E1/2 (2.64)

gkane (E) =

(
2E + Eg

Eg

)
gpara

[(
E + Eg

Eg

)1/2
]

(2.65)

A plot of the parabolic and Kane models is shown in Fig. 2.12

2.3.7 Interband absorption
In this section, we will study the mechanism by which electrons in the VB get excited
into the CB. We suppose the electron starts in an initial state |i〉, absorbs an incident
photon of energy ~ω, ending up at a final state |f〉.

To study the transition rate, we use Fermi’s Golden Rule

Wi→f =
2π

~
|Mif |2 δ (Ef − Ei − ~ω) , (2.66)

where

• Wi→f is the transition rate

• Mif = 〈f |t̂|i〉 is the transition matrix element and t̂ is the electric dipole transi-
tion operator, which you don’t need to know in detail.
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• δ (Ef − Ei − ~ω) enforces the correct selection rule

• If you really wanted to, you could add the Heaviside function to explicitly enforce
energy conservation but this is not necessary

In this section, we ignore interference effects, namely λlight � unit cell dimensions. Then
the electromagnetic vector potential can be approximated to first order (linear):

~A = A0

∑
j=0

(~q · ~r)j → ~A ∼ A0 (1 + ~q · ~r)

where ~q is the photon wavevector. Since the photon also carries an electric field ~E, then
the electric dipole transition operator t̂ is

t̂ = ~p · ~E, (2.67)

where ~p is the electric dipole moment defined as ~p = −e~r. Generally, ~E = E0~ef(~q · ~r)
(some sort of wave), so t̂ ∝ E0~r. We substitute this into Mif

Mit ∝
∫

medium
ψ∗
f (~r)~rψi(~r)d

3~r (2.68)

We are integrating over the entire medium, so the region of integration is symmetric.
Now, ~r is an odd function, so we require that ψf and ψi must have opposite parity for
non-zero Mif .

For example, in GaAs, VB states are derived from p-states whereas in the CB, it is from
s-states. These states have opposite parity, so electronic transitions between these states
are allowed. there are further transition rules. Here, let l denote the orbital angular
momentum of the electron, and L, S, J the total orbital angular momentum, the total
spin and total angular momentum respectively. Then in addition to requiring opposite
parity:

• ∆l = ±1

• ∆L = 0,±1 but L = 0 → 0 is forbidden

• ∆J = 0,±1 but J = 0 → 0 is forbidden

• ∆S = 0

When electric-dipole transitions are forbidden, other types of processes may be possible.
For example, magnetic-dipole and electric-quadrupole transitions are possible between
states of the same parity. This comes from including higher-order terms in our expansion
for ~A.

Using Bloch’s theorem, in a crystalline solid

ψi ∝ ui(~r)e
i~ki·~r ψf ∝ uf (~r)e

i~kf ·~r (2.69)

We substitute this into Eq. (2.68) and get

Mif ∝
∫

medium
e−i~kf ·~ru∗r~re

i~ki·~ruie
i~q·~rd3~r (2.70)

Mif ∝
∫

rens
(uf

∗ui)~r exp
(
−i

[
~kf −

(
~ki + ~q

)]
· ~r
)
d3~r (2.71)
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Figure 2.13: Zoomed in bandstructure showing a vertical dipole transition (red).

We have an exponential factor that is causing a phase shift. Since the complex exponential
is just some trig functions, in order to avoid Mif = 0, we want ~kf = ~ki + ~q, so that
~~kf = ~~ki + ~~q - this is nothing more than conservation of momentum (or energy, if
you prefer).

For dipole transitions where λ � a, then q � qj (photon wavevector is smaller than the
wavevector of the modes). The energy is smaller too, and so dipole transitions are purely
vertical in the BZ. An example is shown in Fig. 2.13.

To get the total absorption α, we need to sum over all possible absorbing transitions given
a photon frequency of ~ω. Naturally then, we need a function that can produce the states
available at a particular energy and accounts for the number of available states to excite
into, and the number of valence electrons - this is the joint density of states (JDOS)
g(E)

WTOT =
2π

~
|M |2g(~ω) (2.72)

such that g(E)dE is the number of available states in the interval [E,E + dE].

Consider a single VB to CB vertical transition for an isotropic, parabolic band. This is
typically the optical excitation corresponding to from the VBM (valence band maximum)
to the conduction band minimum (CBm) at Γ. Then the electron in the VB has to reach
different energies:

• Must have enough energy to reach the edge of the valence band (binding energy)
based on where it is in the BZ. Implies we need effective electron mass m∗

e.

• Go across the bandgap Eg

• electron leaves behind a bound state (negative energy) which is an effective hole

• Therefore ~ω = Ee − Eh

Being more explicit now

Ee = Eg +
~2k2

2m∗
e

Eh = −~2k2

2m∗
h

(2.73)
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Then the photon energy satisfies

~ω = Ee − Eh = Eg +
~2k2

2m∗
e

+
~2k2

2m∗
h

= Eg +
~2k2

2µ
, (2.74)

where µ−1 = m∗−1
e +m∗−1

h is the reduced effective mass.

For an isotropic, 3D material, the density of states g(k) satisfies

g(E) =
2g(k)

(∂E/∂k)
g(k)dk =

1

(2π)3
4πk2dk (2.75)

The derivative ∂E/∂k is obtained from Eq. (2.74):

∂E

∂k
=

~2k
µ

Substitute this back into the expression for g(E), ensuring you then substitute Eq. (2.74)
and you get Then we have 2 cases for g(E)

g(E) =

{
1

2π2

(
2µ
~2
)3/2√

E − Eg ~ω > Eg

0 ~ω < Eg

(2.76)

If you plot a graph of α2 against ~ω, you will get a straight line graph which is then 0 for
~ω < Eg.

2.3.8 Indirect gap semiconductors

~k

CB

CBm

VB

VBM

~ω

~Ω

Eg2 Eg1 photon (~ω)
phonon (~Ω)

Figure 2.14: Depiction of typical indirect gap semiconductor.

Many Group 3-5 semiconductors are direct gap - meaning the global CBm lies vertically
above the global VBM. There exist indirect-bandgap semiconductors where the VBM
and CBm are not aligned, as in Fig.2.14. There are 2 bandgaps Eg1 < Eg2 , where Eg1 is
from the true CBm to somewhere on the VBM, whereas Eg2 is from, the VBM to a local
CBm.

This means in general, to go from VBM to CBm, we need a change of ~k, and the photon’s
momentum ~q is too small. Thus,
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Figure 2.15: Plot of α2 against incident photon energy ~ω for an indirect gap semicon-
ductor at 2 temperature regimes.

Phonons are involved in transitions across the BZ to conserve momentum.

Hence Eg1 = ~ω± ~Ω where the +/− corresponds to absorption or emission of a phonon
respectively. Since ~Ω ∼ 10 meV, so they are usually thermally generated. As such, at
lower temperatures, they are a smaller factor in total absorption, as quantified in Fig. 2.15.

2.3.9 Absorption over indirect gaps
In order to find the transition rate for a "phonon + photon" interaction, you need to sell
your soul to mathematics. Roughly speaking, the absorption coefficient

αind(~ω) ∝ (~ω − Eg ± ~Ω)2 (2.77)
αdir(~ω) ∝ (~ω − Eg)

1/2 (2.78)

i.e., it is a completely different power law dependence between indirect and direct gap
semiconductor, and this is useful to distinguish between them.

• Indirect transitions tend to give much weaker absorption than direct gap. Germa-
nium is an example of an indirect gap semiconductor.

• Indirect transitions have a strong temperature dependence. This is because phonons
exist by thermal activation. A typical ~Ω ∼ 5 − 50 meV, but kBT ∼ 50 meV at
room temperature, so they are always present. However, at low T , phonons are
frozen out (atoms vibrate less) so really only get phonons during the transition.

2.3.10 Other direct transitions
Other points in the BZ may have available direct transitions, not just the direct gap at
the VBM or whatever. For example, in Fig. 2.7, I could have transitions between the red
lines at L, or along the Γ−X path on the left figure. These transitions would correspond
to extra peaks in α(~ω). These peaks will be emphasised by bands which are locally
parallel to each other, over some range of ~k.
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Figure 2.16: Bandstructure of silicon, which is an indirect gap semiconductor, showing
an example of phonon scattering (pencil lines). Screenshot taken from Prof. Gavin Bell’s
lectures, and original diagram from this page.

Flat bands also enhance the DOS, leading to increased probability of absorption by Fermi’s
Golden Rule. Since there is a low curvature, they have a high effective mass (so Ee is
potentially smaller) and still come with a high g(E), leading to a sharper peak.

2.4 Excitons
When a transition occurs, the electron leaves behind a hole. Here, there is a chance to
form an exciton and there are 2 types.

In very flat bands, the electron or hole can get ‘stuck’, i.e. they don’t move around the
BZ as much - these are high m∗ particles. In contrast, high curvature bands have a low
m∗ and are very mobile. In both cases, there is the chance for the electron and hole to
form a bound state called an exciton.

• A bound/Frenkel exciton has a binding energy usually around 100 meV and
forms a radius of about the lattice parameter a.

• A free/Wannier-Mott exciton has a binding energy around 10 meV and its
radius R � a.

In general, for an exciton to be stable, we need the exciton binding energy Ex > kBT .
Free excitons are typically seen at low T < 77 K.
Remark. You can still see bound excitons at low temperatures, see for example, this
paper by Wei et al. Additionally, if you do any optical simulations at 0 K, you can still
see excitons with a Ex ∼ 70− 80 meV, see Ref. [7].

Now, an exciton is a single negative and positive charged particle orbiting around each
other - this is like the hydrogen atom, so we can model the exciton as such:

E = −Rx

n2
, (2.79)
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Figure 2.17: (a) A schematic of an exciton as a quasiparticle of negatively charged elec-
tron (e) and positively charged hole (h) bound together through their mutual Coulomb
attraction. (b) Schematic of the spatial extents of WannierMott excitons and Frenkel
(bound) excitons within a crystal lattice. Reproduced from Ref. [1] without modification.

where Rx is the effective Rydberg energy. Much like how RH = −13.6 eV sets the scale
for the highest energy photon that can be emitted, Rx does the same but for a exciton.
In this model, we have to take account two more ideas

• e−, h+ are oppositely charged and so form an internal electric field that will anti-
align with an applied external one → ε(0), non-vacuum dielectric constant

• Assume e,h+ have their normal effective masses m∗
e,m

∗
h

Hence, RH → Rx by setting m→ µ, ε0 → ε(0):

RH =
me4

8h2ε20
→ Rx =

µe4

8h2ε(0)2
(2.80)

Typically, ε(0) is around 10 or more, and me > µ ∼ 0.1me giving us Rx ∼ 10 meV as
anticipated. We also scale the Bohr radius to the exciton radius R

R =
aBε(0)

µ
(2.81)

where aB is a constant around 0.05 nm, giving R ∼ 5 nm. Plotting α against ~ω for GaAs
is shown in Fig. 2.18. We see that there is an initial exciton peak at low temperatures that
gets sharper at lower temperatures. It is hard to see, but after the peak, the square root
behaviour follows from Eq. (2.78). At high temperature, we see that there is basically no
peak at all. This is characteristic of a bound exciton causing enhanced absorption at
the band edge.

2.4.1 Excitons in external fields
If an applied electric field Eext is stronger than the exciton’s internal electric field Eint,
the electron splits off from the hole.

The internal electric field is roughlty Eint ∼ 2Rx/eR, which is smaller than the typical
fields in most devices such as p-n junctions.

Inside a p-n junction, Eext = ∆V/L > Eint, so this easily breaks up the electron-hole pair
and in most devices, you can treat the electron and hole separately. An example of this
is solar cells.
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Figure 2.18: Optical absorption of GaAs at different temperatures. Reproduced from
Ref. [6].

2.5 Luminescence and LEDs
We have been studying the case where photons are absorbed. Let’s study the opposite,
where they are released. In this case, an excited state electron drops down to the ground
state and emits a photon. This is luminescence.

There are 3 methods to produce excited states (and thus 3 ways to do luminescence).
These are

• Photoluminescence (PL) - emission after photon absorption

• Cathodoluminescence (CL) - emission after electron collisions

• Electroluminescence (EL) - emission due to a current or electric field. This is what
is used in LEDs and laser diodes.

We first compare direct gap and indirect gap materials for use in luminescence.

Direct gap Indirect gap
Efficient absorption for ~ω > Eg Phonon momentum ~∆k needed for radia-

tive electron-hole recombination - ineffi-
cient

Efficient emission across band extrema τP long, luminescent efficiency small so
strong combination with non-radiative re-
combination τNR

Short radiative lifetime τR ∼
10−8, 10−9 seconds Efficiency =

1

1 + τR
τNR

(2.82)

We do NOT use indirect gap semiconduc-
tors for luminescence.
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Figure 2.19: The luminescent intensity for a non-degenerate direct gap semiconductor
with bandgap Eg.

Definition 2.5.1. The luminescence intensity I(~ω) = Wi→ffcfv, where

• fc is the probability of electron occupying the CB

• fv is the probability of hole occupying the VB

• Both fc, fv are Fermi-Dirac (occupation) functions

• Wi→f = |Mif |2g(~ω) is the transition rate, and is the same for absorption in that it
is ∝

√
~ω − Eg for direct gap materials.

The Fermi-Dirac function is
f(E) =

1

e(E−µ)/kBT + 1
(2.83)

where µ here is the chemical potential and we will be ignoring this for the rest of the
section. We can use a Taylor series expansion to first order (i.e, the Boltzmann factors)
so that

fc = e−Ee/kBT fc = e−Eh/kBT

Then the intensity is

I(~ω) ∝
√

~ω = Eg exp [− (Ee + Eh) /kBT ] (2.84)

But by Eq. (2.74), the term Ee + Eh = ~ω − Eg so substituting into Eq. (2.84) we get

I (~ω) ∝ (~ω − Eg)
1/2 e−(~ω−Eg)/kBT (2.85)

Figure 2.19 shows a plot of this. We see that Eg is just a bit to the left of the emission
peak. You can find the location of this peak by differentiation. Indeed, we get

dI

d(~ω)
=

1

2
(~ω − Eg)

−1/2 e−(~ω−Eg)/kBT +
−1

kBT
(~ω − Eg)

1/2 e−(~ω−Eg)/kBT = 0

=⇒ 1

2
− ~ω − Eg

kBT
= 0

=⇒ ~ω = Eg +
kBT

2

as the location of the intensity maximum.

In degenerate direct-gap semiconductors, there are two situations
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• For n-type, many electrons fill states in CB

• For p-type, many holes fill states in VB

For example, for n-type GaAs, set EF = 0. This may push part of the conduction band
into the negatives. Then the energy emitted ∆E = EF −ECBm where ECBm is the energy
of the conduction band minimum.

2.5.1 CL-imaging and spectroscopy
See Fig. 2.20(left).

• Generate electron-hole pairs with nm-sized beams in scanning electron microscopy.

• Beam reaches several keV

• Useful for looking at (semiconductor) devices

Figure 2.20: (left) Diagram of cathodoluminiscence. (right) p-n junction for EL. The
shaded region denotes filled states in the VB and CB. Both diagrams are screenshots of
Prof. Gavin Bell’s lectures.

2.5.2 EL-devices
We take a good-ol p-n junction and apply a bias voltage V . This injects electrons (and by
extension, holes) by a bias voltage, which is how an LED is made. The setup is specifically
p-i-n (positive-interface-negative) and is shown in Fig. 2.20(right).

• Apply V : the electrons and holes move into the depletion region ‘i’ which narrows.

• If the material of ‘i’ is a direct gap material → strong emission and narrow range
of photon energies around Eg emitted.

• If ‘i’ has many defects, τNR is short and luminescence is weak (using table from
before).

• Therefore, materials in an LED must have similar lattice constants, otherwise
you get dislocations (bonds become unstable) and LED doesn’t work.

• Canonical example: GaAs - (Al,Ga)As-AlAs. All 3 materials have very close lattice
constants (by coincidence really). AlAs has a higher Eg. Embedding GaAs between
p-(Al,Ga)As and n-(Al,Ga)As gives an efficient red LED. You would imagine then,
using GaN with wide bandgaps gives blue LEDs.

If we are careful, we can engineer bandgaps by adjusting the doping of Al. The compound
is AlxGa1−xAs over 1.4 - 1.9 eV for x < 0.4. GaAs is a near-infrared emitter, and if x = 0.4,
it is a red LED.
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Figure 2.21: Schematic setup of MBE.

2.6 Molecular Beam Epitaxy (MBE)
We turn our attention to the growth of nanomaterials. Molecular Beam Epitaxy (MBE)
is a modern, high-quality technique to grow low defect density, high purity material
layers, and allows for doping control and variable layer thicknesses from the micron
to single-atomic scale. MBE is extensively used for Group 3-5 semiconductors, though
other methods are available for other compounds.
Definition 2.6.1. Heteroepitaxy is the growth of different materials with the same
crystal structure.

For example, GaAs and AlAs can be layered together. The interface they share (the As)
is the heterojunction. Both GaAs has a zincblende structure and AlAs has an FCC
structure, more specifically they both are in the F-43m space group.

In order for MBE to work, we need the lattice constants of the 2 materials to be as close
to each other as possible. Even a difference of 7% like InAs/GaAs is enough to cause
crystallographic defects.

These defects as previously mentioned, leads to strong non-radiative recombination, so
τNR � τR, which is optically very bad.

2.6.1 Setup of MBE
For the exam, you will need to know how MBE works and why each component is neces-
sary. A schematic is shown in Fig. 2.21.

• effusion cells: elements are heated up into a vapour. The shutters are open to let
out materials, and allows thickness adjustments. They are all aimed at the wafer
(sample plate).
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Figure 2.22: Close-up of what can happen at the surface of the sample during MBE.

• MBE requires ultra-high vacuum and sterile environments to avoid contami-
nation

• The wafer has a heater filament to keep the sample at the correct temperature to
allow for deposition

• There is also a manipulator (not labelled) on the wafer to rotate and move the
sample around

• A RHEED (Reflection high-energy electron diffraction) allows you to do electron
diffraction of the sample surface to see what the sample looks like.

At the material level, multiple things can happen, which is shown in Fig. 2.22. Note that
naturally you will not have isolated atoms even in vapour form - molecules or small groups
of atoms will generally make their way to the sample, and under the right conditions, the
thing you want will happen (hopefully).

1. Arrival - self-explanatory, the structure arrives near the surface

2. Dissociation - atoms hit the surface and may dissociate. in Fig. 2.22, Sb4 is incident
and dissociates into 2 pairs of Sb.

3. Desorption - excess material may leave the surface and be collected in waste.

4. Surface migration - due to interacting edge potentials and momentum conservation,
incident atoms may end up moving along the sample surface

5. Nucleation: bonds formed with the surface

6. Surface segregation: material breaks bonds - this could be because of defects or
lattice mismatches, and what you have is just an atom sitting there

7. Bulk diffusion - incident atoms may move beyond the surface into the sample.
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(a) (b) (c) (d)

Figure 2.23: Schematic of typical nanomaterials in different dimensions. (a) 3D bulk
crystal, (b) 2D quantum well (confinement in 1 axis), (c) 1D quantum wire (confinement
in 2 axes), and (d) quantum dot (QD), confinement in all axes. Each pair of black arrows
that are opposite each other represent confinement in that direction.

8. Epitaxial growth - the end goal - atoms form bonds and stably sit on top of layers
on the sample surface.

2.6.2 Nanomaterials
Quantum confinement affects the wavefunction and energy eigenvalues of electrons and
holes in semiconductors. This has lead to physicists across the world abusing this to make
cool, small quantum devices spanning different spatial dimensions. The typical categories
are shown in Fig.2.23. 2D and 1D materials are real. Graphene is a 2D quantum well (it
has carbon chains confined to a plane), and carbon nanotubes are wires (the chain axis
is along one direction). It is important to note that the dimension here only refers to the
unconstrained dimensions - not their actual dimension in 3D space as we see it.

2.6.3 Particle in a box
In any confinement direction, the wavefunction behaves like a particle in a box with
discrete eigenenergies En and stationary wave-like solutions, so that

ψn ∝ cos(knz) = cos
nπz

l
(2.86)

assuming confinement in the z direction (so the material is in the x − y plane). The
energies are then

En =
~k2n
2m∗ =

n2π2k2n
2m∗L2

(2.87)

where L is the width of the quantum well in that axis.

Now, we can do the same for the free (unconfined) axes by separation of variables. In this
case, the energy in the unconfined axes is ~2k2i /2m∗ where i is the unconfined directions,
whilst it is of the form Eq. (2.87) for the confined direction(s). Defining the constant
~2/2m∗ := K

E(kx, ky, kz) =


K(k2x + k2y + k2z) 3D
K(k2x + k2y) + Ez,n 2D
K(k2x) + Ey,m + Ez,n 1D
Ez,l + Ey,m + Ez,n QD

(2.88)
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Figure 2.24: Left: GaAs/AlGaAs quantum well of width L. The hills of GaAs are caused
by band offsets. Right: energy level diagram for the CB and VB, relative to the band
edges.

Let’s look at this in action with a GaAs/AlGaAs quantum well. It is confined in one axis
as shown in Fig. 2.24.

Suppose the energy levels are arranged as in Fig. 2.24(right). Then there will be strong
emission or absorption when

~ωi = Eg + Ei +Hi; i = 1, 2, . . . (2.89)

Here, we have drawn finitely-many states, which is not an infinite square well. We can
solve the finite square well instead. You should refresh your memory of how to do so for
the exam:

1. Split the finite well into 2 (or 3) regimes. The case when V = 0 inside the well, and
the cases V = V0 outside the well.

2. Always recall that E = ~2k2/2m∗

3. Rearrange the Schroödinger equation into something you can solve, it should be
second-order and easy to solve

4. Inside the well, the general solution will be ψ = A sin(kx) +B cos(kx)

5. Outside the well, the left and right side will have the form ψ = Xe−αx + Y eαx.
where X,Y will be different constants for the left and right sides

6. Find all constants from boundary conditions and requiring differentiability at the
places where the wavefunctions meet.

Anyhow, we can move on to find the transition rate Wi→f . Recall Fermi’s Golden Rule

Wi→f =
2π

~

∣∣∣〈f |Ĥ|i〉
∣∣∣2 g(~ω) (2.90)

Due to confinement, the JDOS and matrix element will change. Here, Ĥ = −e~r · ~E the
Hamiltonian of the system. Assume the system is confined along z. The general electron
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Figure 2.25: Example of a discrete density of states (DOS) for a quantum dot.

wavefunction by Bloch’s theorem is

Ψ(x, y, z) = u(x, y)φ(z)

where the functions are different by separation of variables. Indeed, this can be rewritten
as

Ψ(~k, n) = u~k(~k‖)φn

• ~k‖ is the 2D wavevector in the x, y plane.

• n is the quantum number describing confined states along z

• g(~ω) is as in Eq. (2.76) for a direct gap semiconductor.

Absorption of a photon takes us to the final state Ψ → |f〉. This excites an electron into
the CB, so since a hole will be left behind in the VB, the initial state |i〉 is a hole. The
electron and hole wavefunctions are

|i〉 ∝ uh(~r)e
i~k·~rφ(h)

n (z)

|f〉 ∝ ue(~r)e
i~k′~rφ(e)

n (z)
(2.91)

where of course ue, , uh are electron and hole Bloch functions.

For a direct-gap semiconductor, transitions are vertical in the BZ, so the wavevectors
before and after are the same,

~k′ = ~k

The matrix element in Fermi’s Golden Rule is

M ∝ 〈f |z|i〉 =
∫
u∗eunzφ

(e)
n φ(h)

n ei
~k·~rd3~r (2.92)

2.6.4 DOS for confined states
Definition 2.6.2. A quantum dot is a material which has been confined in all three
directions. Sometimes these are termed artificial atoms.

Because of this, all wavefunction states in each direction are discretized, leading to a
discrete DOS rather than one with some continuity: You can have QDs with more complex
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Figure 2.26: Density of states for a generic quantum well. It exhibits a step like pattern,
and starts off at zero.
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Figure 2.27: Parabolic dispersion along x− y (unconfined) region.

potentials, thus more complex wavefunction indexing and energy levels, but they are
always discrete.

In a quantum well,you have regular dispersion in 2D and confinement in 1D

g(E) =
2g(k)

(∂E/∂k)
; g(k)dk‖ =

1

π
kdk‖ in 2D

E =
~2k2‖
2m∗ ;

∂E

∂k‖
=

~2k‖
m∗ ; g(E) =

2m∗

~2π
= const

(2.93)

So what can we get from these equations? We see that g(E) is a constant, but the
derivative is positive, and depends on k‖, therefore, we have steps for every n as shown in
Fig. 2.26. For each discrete state n in the confined direction, each level m in the dispersion
directions have branches. These are subbands. Plotting the energy against k‖, we get
parabolic dispersion

The absorption spectrum is also interesting, comparing it to the spectra of 2D and 3D
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Figure 2.28: Plot of the absorption coefficient against incident photon energy for quantum
well against different dispersions.

dispersion, it is a smoothened out 2D dispersion with peaks at every jump. The magnetic
component of angular momentum M 6= 0 for n = m so the allowed transitions are from
hole 1 to electron 1, hole 2 to electron 2 etc. This is notated as 1 → 1 etc. This is
shown in Fig. 2.28. For GaAs (and most group 3-5 semiconductors), there are pairs of
transitions for light and heavy holes. Spikes at the onset of every n → n transition are
due to excitons, which enhance α.

2.6.5 QDs by MBE
MBE is very good at 2D structures - is it good for QDs?

Figure 2.29: Schematic of electrically-defined QD.

Electrically-defined QDs

1. Create a quantum well with a high mobility, narrow gap semiconductor sur-
rounded by a wide-gap material as in Fig. 2.29.

2. Fabricate nano-scale electrical contacts on the QW of a horseshoe shape

3. Apply a voltage V , which generates a nanoscale potential well electrically, leading
to confinement in x, y - see Fig

4. z-confinement by the QW

5. Disadvantages: slow, expensive, difficult, low density of QDs

6. Applications: qubits, spin-charge devices

Strain-driven, self-assembled QDs Classic example: InAs on GaAs(001). There is
a high strain due to a 6.7% lattice mismatch, but instead of forming dislocations, by pure
chance, the following forms instead
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Figure 2.30: Strain-driven quantum dot islands.

• alloyed wetting layer (WL)

• After, forms 3D nanoscale islands, as seen in Fig. 2.30.

• Disadvantages: need to control strain - too much strain leads to dislocations, so τNR
shortened and emission killed.

• Applications: QD lasers with low temperature sensitivity.

This process is thermodynamically-driven. There is lots of flexibility over the size,
composition and spacing BUT since the islands are self-assembled, the positions and sizes
are random. This means we have a size distribution, and so the energy levels from dot to
do will be different - this is inhomogeneous broadening.

Droplet epitaxy for low-strain QDs

• Deposit Ga onto GaAlAs - forms nano-scale droplets

• Open As shutter, forms GaAs 3D islands

• Cap with AlGaAs, forms QDs

• Advantages: these are low strain and more homogeneous in shape and size

• Fine structure in optical emission suppressed - great source of entangled photons

• Applications: quantum key distribution

2.6.6 Ideal rectilinear QD
Suppose we have a QD with dimensions Lx × Ly × Lz. Since there is confinement in
all 3 directions, the energy levels in each direction are discrete and index by nx, ny, nz

respectively. The energy of each state is then

E =
t21
2n∗

[(
nxπ

Lx

)2

+

(
nyπ

Ly

)2

+

(
nzπ

Lz

)2
]

(2.94)

Unfortunately, real QDs are much more complicated and needs the tight-binding/ ~k ·
~p/perturbation theory to model them.

2.6.7 Colloidal QD
Spherical QDs have atomic-like eigenfunctions. Recall from the solution of the hydrogen
atom, you had the radial component Rn,l(~r) and the spherical harmonics Yl,m(θ, φ) where
l,m are the orbital and magnetic quantum numbers respectively. effectively for spherical
QDs, we take the hydrogen solution and scale it by ε(0) and m∗.
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Figure 2.31: Inverted lens QD. Screenshot from Prof. Gavin Bell’s lectures.

For CdSe (a group 2-6 material), the energy

E = Eg + E(r, θ, φ) (2.95)

where Eg is the bulk bandgap, around 1.7 eV which is red light. E(r, θ, φ) is the confine-
ment energy, derived from the ydrogen-like solution, which can go up to around 1 eV,
taking us to an energy around 2.8 eV, which is blue light emission. The varying QD size,
means varying confinement energies, so the entire visible spectrum is covered.

2.6.8 Inverted lens QD
Most QDs are wider than they are tall - e.g. InAs/GaAs. This necessitates a better
model of them, called the inverted lens QD shown in Fig. 2.31. The lateral (x − y)
potential is V (r) ∝ r2 for small r2 = x2 + y2. This approximation is sufficient because
carriers can spill onto the InGaAs WL. Using separation of variables and cylindrical polar
coordinate φ we have

Ψ(x, y, z) = Ψ(r, z) = ψ‖(r, φ)ψz(z) (2.96)

By separation of variables, each term satisfies its own Schrödinger equation[
−~2

2m∗∇
2
‖ +

1

2
m∗ω0r

2

]
ψ‖(r, φ) = E‖ψ (r, φ) (2.97)[

−~2

2m∗
d2

dz2
+ V (z)

]
ψz(z) = Ezψz (z) (2.98)

The total energy E = E‖ + Ez. As you know from quantum mechanics, the harmonic
oscillator in 2D has 2 degree of freedoms nx, ny so

E‖ = (nx + ny + 1) ~ω0 (2.99)

where nx, ny ∈ N including 0. Considering only the ground state energy of z, Ez,1 (flat
QD approximation, because QDs generally broader than taller), the total energy is

E = E = (nx + ny + 1) ~ω0 + Ez,1 (2.100)

• If QDs symmetrical in x, y (e.g. droplet epitaxy) then E is degenerate in nx, ny:
E01 = E10

• If QDs elliptical in x, y ()e.g. strain driven InAs/GaAs) then no degeneracy - leads
to fine structure, which is bad for high-purity single photon emission

• Possible to isolate single QDs, even if grown by self-assembly or droplet epitaxy -
leads to sharp emission lines
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Figure 2.32: Shift in wavefunction after applying an electric field - these are calculated
from approximations but you see the trend happening.

2.6.9 Quantum-confined Stark effect
Definition 2.6.3. The atomic Stark effect is the splitting of spectral lines after applying
an external electric field ~E
Definition 2.6.4. The quantum-confined Stark effect is the shifting of quantum-
confined electron and hole levels after applying an external electric field ~E in QW/QDs

Suppose the electric field is along z, so ~E → Ez. The electron energy change ∆Ee = eEzz.
Then:

1. Electron wavefunction shifts to the one side - e.g. left, see Fig. 2.32

2. Hole wavefunction shifts to the opposite side - e.g. right, see Fig. 2.32

3. Total overlap is reduced since the matrix element

M ∝
∫ L

0

φ∗
hφedz

4. Luminescence and absorption reduced

Confinement of excitons in QWs means that electric fields exceeding the exciton ionisa-
tion field (in bulk material) can be applied.

Now, since an electric field changes energies, it must change transition energies too

∆(~ω) = ∆Ee +∆Eh = −Ez [−e∆ze + e∆zh] (2.101)

Since electrons and holes are oppositely-charged, they move in opposite directions under
an applied field.m and δzh > 0 and δze < 0

∆ (~ω) = −Eze (∆zh −∆ze) < 0 (2.102)

QC Stark effect leads to red-shift of emission/absorption

From perturbation theory, we find ∆E ∝ E2
zm

∗L4 for small (weak) fields. For stronger
fields, ∆E saturates because ψh, ψe ‘pile-up’ at opposite sides of the well. This leads to
applications like tunable photodetectors.
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2.6.10 Intersubband detectors
We assumed so far that the Fermi level is in the midgap where there are no available
states. However, if we dope materials, we can shift the Fermi level to a different energy,
say into the CB above energy E1, so n = 1 is filled, but n ≥ 2 is empty. The question is
how do we calculate the transition rate from n = 1 → 2

Since the binding energies in a QW are several tens of meV, the transition energy is the
same and this produces an infrared spectrum.

The selection rule polarisation in-plane means M = 0. Intersubband detectors need a
component of light’s electromagnetic field in the z direction

M = 〈1|z|2〉 =
∫ L

0

φ∗
1zφ2dz (2.103)

φ1 and φ2 must have opposite parity for M 6= 0, so the transition is allowed. This allows
us to push the spectrum into far infrared or even THz frequencies!

2.7 Angle-Resolved Photo-emission Spectroscopy (ARPES)
So we have talked about the band structure and how we can use it to understand the
optical response of materials. However, we want to be able to measure the dispersion
E(~k) - this is the role of Angle-Resolved PhotoEmission Spectroscopy (ARPES).

2.7.1 Requirements
Not all techniques are without a catch. You will need to know the numbered bullet points
and the details highlighted in bold may be keywords to use in a written question for the
exam.

1. A good photon source

• Photon energy ~ν > ϕ the workfunction of the material.

• Can use second harmonic generation/frequency doubling to get the
right frequencies. This involves using a non-linear optical process (i.e. use
second order susceptibility tensor and vector potentials). For more extreme
frequencies, can use high-harmonic generation (HHG) for target frequencies
around 6-12 eV.

• An ultraviolet (UV) gas discharge lamp is usually used, with photon frequencies
~ν = 21.2 or 40.8 eV

• For large-scale, high-intensity experiments, can use synchrotrons (e.g. Di-
amond Light Source) to produce energies in the range 30− 1000 eV

• Synchrotron also allows for polarisation control.

2. Measurement of electron energy and momenta

• ARPES setups have a hemispherical analyser with a 2D detector

• A time-of-flight analyser, usually a pulsed source, to allow for accurate elec-
tron trajectory analysis

• Movable point detector
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Figure 2.33: Left: typical ARPES schematic with a hemispherical analyser. Top right:
coordinate system at the sample surface. Bottom right: Sample ARPES spectra in energy-
momentum space. Bright areas indicate energy and momentum values where high pho-
toelectron flux is observed and correspond to the bandstructure of the material from
Stanford’s Shen Laboratory.

3. Ultra-high vacuum

• Allows electron transport (so they don’t collide with, e.g. air molecules)

• Clean sample surface

• A short inelastic mean free path (short IMFP) of low energy electrons can lead
to an oxide layer/adsorbates on the surface, killing ARPES measurements
- means the sample has to be re-prepared or a new one used entirely (can be
expensive and time-consuming)

4. Low T < 77 K usually. Allows for optimal energy resolution from 20 meV down to
a few meVs.

2.7.2 Setup of ARPES
Here, ~ν = ~kphoton in Fig. 2.33 is small compared to the (parallel) energy k‖ of the elec-
trons. Additionally, the electrons are focused by an iinput lens into the hermispherical
analyser. The orientation of the sample maps θ, φ to the BZ. By moving the sample angles
relative to the analyser, you can map out the intensity I(EKE, θ, φ) where EKE is the
electron kinetic energy.

At the surface, we must conserve energy and parallel momentum

EKE = ~ω − ϕ− EB

p‖ = ~~k‖ =
√

2meEKE sin θ
(2.104)
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Important: rk⊥ is not conserved. At the surface, the potential is non-periodic (unlike
in the bulk). At high θ, the electron is emitted close to parallel with the surface. This
means sin θ ∼ 1. In this case, the parallel momentum is very large, and the electron
scattering here will be due to phonons, and the electrons are pushed ‘outside of the first
BZ’. This means you can get parallel momenta

k=k‖ + g‖ (2.105)
where g‖ is the reciprocal lattice vector. Since BZs are also periodic, you can always fold
back to the first BZ. This large scattering is called Umklapp scattering.

As well as large momentum measurements, we also have limitations on small momentum
and energy measurements:

• Energy resolution - this will be due to a calibration and possibly combination of
the photon source, the analyser and possibly temperature

• Momentum resolution - if you consider a change in Eq. (2.104), you get

∆k‖ =
√

2meEKE/~ cos(θ)∆θ (2.106)

Now, the change in angle ∆θ is fixed by both the input lens and analyser, but we want to
improve ∆k‖. Well Eq. (2.106) tells us we should lower the electron kinetic energy,
so we lower the photon energy. This means we collect more grazing exits. This
isn’t good for states at Γ but is good for other states in the BZ. The typical method for
grazing-ARPES is laser ARPES where we can just focus a low-energy photon beam.

For 1D and 2D materials, we only care about the parallel components of energy and mo-
mentum because there is no perpendicular dispersion. For example: graphene, hexagonal
boron nitride, MoSe2 and surface accumulation layers in InAs.

However, for 3D materials, there is a perpendicular component and we would like to
measure the full E(~k). To accomplish this, we need a technique that can satisfy the
following three steps:

1. Knocks electrons out of an occupied VB state to an unoccupied state

2. Electron travels to the surface in this excited state

3. Electron overcomes potential barrier and travels to analyser as a plane wave with
momentum components (k⊥, k‖)

Normally, the unoccupied state is modelled as a free electron with a minimal energy
eV0 below the vacuum level. This isn’t a complex model, but it’s quite accurate. V0 is
the inner potential - it is a parameter (found by fitting ~ν-dependent ARPES data)
and its not a physical quantity (in the sense that it isn’t attached to the setup, material
directly). Note that eV0 6= ϕ, the workfunction.

~2k2

2me

= EKE =
~2

2me

(
k2‖ + k2u

)
, (2.107)

where ku is unconserved momentum.

However, we know
~2k2‖
2me

= EKE sin2 θ

=⇒ EKE cos2 θ =
~2k2u
2me

=
~2k2⊥
2h

− eV0
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Figure 2.34: Parabolic dispersion for k⊥ labelling the Fermi energy EF , inner potential
V0. The shaded blue area represents potential occupied states

where the first term is the free-electron energy. The perpendicular component of momen-
tum is then √

(EKE cos2 θ + eV0) 2me
1

~
= k⊥ (2.108)

and ϕ = Evac − EF .

2.7.3 ARPEs Fermi-Surface Mapping
A metal is a solid with a Fermi surface. Hence, g(EF ) 6= 0 and the Fermi surface is just
the band dispersion E(~k) at E = EF .

For example, we can look at ARPES measurements for Cu in Fig. 2.35. What we see in
Fig. 2.35(right) is only a 2D slice of the 3D Fermi surface.

In contrast, semiconductors do not have a Fermi surface because EF usually lies in
the bandgap between the VB and CB, hence g(EF ) = 0.

However, as mentioned previously, we can dope semiconductors to move EF into the
CB (p-type) or VB (n-type). AN example is heavily n-doped InSb or InAs. In this
case, EF > Eg leading to degenerate states. Near the CBm, Cb is mostly isotropic
(E = E(|~k|)) leading to a 3D Fermi surface and any 2D slice is circular.

However, we can get non–circular Fermi surface slices. This would mean an anisotropic
band structure.

The prototypical example is Si, silicon, shown in Fig. 2.36.

An indirect bandgap semiconductor, it has Fermi surface pockets not centred at Γ for
a degenerate n-type. If you look at X → Γ path, its curvature is different from X → K.
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Figure 2.35: Left: Fermi surface for Cu in Cartesian reciprocal space. Right: Laser
ARPES measurements in 〈111〉 plane. Screenshot from Prof. Gavin Bell’s slides.

Figure 2.36: Silicon degenerate fermi surface (left) and band structure (right).
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This also means the effective mass m∗ is anisotropic (varies in the BZ).
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