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0.1 Introduction
Welcome to my notes for the Warwick module PX436: General Relativity. This course is
split into two halves: one to setup the mathematical framework and derive the Einstein
Field Equations; the other to explore particular solutions and their applications. These
notes aim to cover the lecture content as it was taught in the 2024-25 academic year whilst
supplanting parts where I thought it could deal with more information. Thus the first half
of these notes will be more mathematical than the lectures and problem sheets suggest.
All of the pure maths mentioned in these notes but not the lectures are non-examinable
and there for clarity.

0.1.1 How to use the guide
Anything in a white box with a blue title frame like

Title here

Unlike in previous guides, where this blue box is for memorisation, for these notes,
these just exemplify main equations or points.

Any equation which contains a regular, black box like this is important information but
you shouldn’t need to memorise it.

This guide is very detailed, almost like its own set of lecture notes. It aims to answer
as many questions as possible regarding both the maths and the physics in this module.
Any parts non-examinable will be explicitly marked non-examinable. Beware that this
can change over the years if this guide isn’t updated and therefore check with the lecturer.

0.1.2 Tips
• It is guaranteed that at least one thing from every chapter will be examined, though

there is a bias towards the applications

• Do all the problem sheets and past papers - they are very good and many appeared
on the 2024 exam paper.

• Think a lot about frames of reference and what you’re aiming to transform to.

0.1.3 Credits
First, thank you to those who submitted feedback

• Roy S

• Sam D

• Ladislas W

A big thank you to

• Prof. Tony Arber, whose well-delivered General Relativity lectures I had the plea-
sure of attending, and which these notes are derived from.

• Dr. Gareth Alexander who has a brilliant set of typeset notes for an older version
of this module.
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Chapter 1

Einstein Field Equations

The following sections will concentrate on the formalism and derivation of the Einstein
Field Equations. The beginning of this chapter is rearranged differently from the lectures,
with all the maths and general equations reshuffled to the beginning so it will be dense.
Then after that, the energy-momentum tensor is defined and the rest of the course follows
as in the lectures.

3



1.1 Why GR? Issues with Newton (his theory, not
himself)

Special relativity - classical physics of flat space-time with no gravity. General relativity
introduces curvature into space-time and gravity. GR attempted to solve some issues
with Newtonian gravity:

• Newton incorrectly predicted the precession of the perihelion (point of closest ap-
proach to the Sun) to be ' 5557 are-seconds/century, due to the Sun and planets
with Jupiter having the largest impact of the planets

• A correction posted in 1846 that led to Uranus to be found

• Einstein would correct this correction by 43 arcseconds per century (still not as slow
as my brain).

1.2 Equivalence Principle

Equivalence Principle

Gravitational mass mg = Inertial mass mI OR Locally, gravity and acceleration
are indistinguishable.

1.2.1 Einstein Thought Experiments
To affirm the second definition of the equivalence principle, Einstein devised some thought
experiments, and as physicists, we like thinking. Consider 3 sealed boxes with no external
forces, so no weak, strong, EM etc. They are defined in the following Figure 1.1: Notice,

K' (accelerating)K (inertial) K' (at rest in gravity)

v ≠ 0

v ≠ 0
a g

Figure 1.1: Caption

accelerating the room upwards causes the paths to curve (imagine throwing a ball straight
ahead, then moving your eyes upwards - to you, the path curves downwards). This is
locally equivalent to the third room, where there is no assumed acceleration but gravity is
acting (same ball scenario, but this time throw the ball and keep eyes fixed). The latter
two rooms are only locally equivalent since if you consider a same fixed point in both
rooms, you wouldn’t be able to tell which scenario is happening until you looked at a
global scale.

Another thought experiment is the deflection of light. We take the same boxes as
Fig. 1.1, but this time with a single horizontal (left-to-right) photon. Equivalence principle
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tells us, the same thing happens, where light will bend downwards in this case. Although
the photon has zero mass, we can ‘cancel them out’ (don’t worry about dividing by zero
here just don’t think about that when thinking about this).

Finally, we have probably the most innocuous example: a rotating disk. Let the reference
frame K be a disk of diameter D and circumference C. Obviously, π = C/D. Now let
the frame K ′ be one where you are constantly rotating around the disk. Weirdly enough,
the new ratio C ′/D′ > π! Note that D = D′ because the diameter is perpendicular to
the motion, so SR tells us its length is unchanged. The conclusion of the circumference-
to-diameter ratio being greater than π can be argued as so:

1. Break the circumference down into infinitesimal ”straight bits”, or think about many
infinitesimal rulers

2. SR =⇒ length contraction of each bit (ruler)

3. So more of these bits (rulers) are needed to complete the circle in K ′

4. So C ′ 6= C.

Since rotation implies a central acceleration, this implies a central gravity, so by the
equivalence principle, the space around the disk is curved!
Remark. The reason for this is because in differential geometry (RIP MA4C0 Differential
Geometry takers), GR is casted in hyperbolic space - here, a regular flat circle in flat
space-time keeps the same radius but an increased circumference in hyperbolic space, as
the angular motion of the disk causes distorts the manifold. You’ve also got to worry
about synchronising time when solving this problem.

1.2.2 Field Equation
The Newtonian field equation is a type of Poisson partial differential equation

∇2φ = 4πGρ, (1.1)

where φ is some scalar potential and ρ a mass density. Effectively, ∇2 relates to curvature,
ρ to energy density and φ to spacetime geometry. This will get us to the Einstein Field
Equations (spoilers!).

1.3 Differential Geometry
A bit of maths without the formalism of a maths course. These definitions and state-
ments are formally non-examinable but help to explain some jumps in derivations.
These definitions (slightly modified) are taken from Maxwell Stolarski’s notes for MA4C0
Differential Geometry. One of the most important visualisations you can make for a man-
ifold is take some real surface (e.g., a blanket) and imagine you are fixed to the surface
of it. You can only move along the surface, you cannot go away from it. This means if
you are at a point p, whatever direction you will move will always be a tangent vector
(whatever this precisely means) to p and so we can only talk about manifolds and GR in
terms of tangent vectors and local spaces as we will see.

You might wonder then, ‘but real space-time is not a blanket’ - there are 3 spatial dimen-
sions. Unlike a blanket, where we could embed it into our 3D interpretation of space, we
are three-dimensional beings that live in our own three-dimensional manifold, so we can’t
simply shoot ourselves somewhere and start drawing tangent planes easily. But imagine
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for a moment, a fourth spatial dimension: if you shoot yourself into space somewhere to a
point p, the same idea applies. No matter where you choose to go, there will be a tangent
vector in that direction. However, the non-linearity and locality of manifolds (since if
you move to point q, the tangent space may necessarily not be the same as in p) requires
careful treatment of quantities like acceleration whilst also ensuring the same relativity
principles. Of course, we don’t have a fourth spatial dimension, so rigorous treatment of
the changes of vector fields and so on is necessary. This is one of the key ideas behind
GR and why Einstein used differential geometry.
Definition 1.3.1. The notation C∞(X) on a set X denotes an infinitely-differentiable
(the C∞-part) function on X → R. The map may be notated more explicitly.

1.3.1 Manifolds (non-examinable)
Definition 1.3.2. A smooth manifold M is a space where

• Given any (open) subset U on M , it can be written as union of a countable open
basis set U = ∪α∈AUα

• It has a bijective, continuous, infinitely-differentiable map φα : U → Rn, called a
smooth chart, whose inverse is also continuous) φα for every Uα

Moreover, the collection {(Uα, φα)} is a smooth atlas of charts. This can be thought of
as a set which describes regions of the manifold and only works on local regions. This
is why we strictly we have a collection of open sets since we need to break down curved
space into ‘local regions of Euclidean space’.
Definition 1.3.3. Let M be a smooth manifold, and some point p ∈ M . Then the
tangent space TpM is defined as:

TpM = R ·

{
∂

∂x1

∣∣∣∣
p

, . . . ,
∂

∂xn

∣∣∣∣
p

}
(1.2)

where (x1, . . . , xn) are the local coordinates, i.e. the basis that makes up the local
Euclidean space around p.

Questions you may have:

• What do the derivatives act on? Well, they act on functions M → R. Easy example:
suppose M = R2. The derivatives are ∂

∂x1 and ∂
∂x2 . Therefore the tangent plane

(line in this case) will be the tangent to any point p = (x, y) = (x, f(x)) that lies in
graph on the plane.

• the notation R· just means that its the real number system projected onto the set
of derivatives, because that is what the tangent space consists of.

Intuitively, TpM can be thought of as every vector which can be tangent to a point p.
E.g. take some surface in R3. At every point p, you can locally fix a Euclidean system
(x1, x2, x3). Then every tangent vector is going to be a derivative projected in each
direction of xi.

Note that the local coordinates you can define around p is not unique, e.g. you can rotate
the coordinate system. This is done by a change of basis zi = Aijxj:

∂

∂xi

∣∣∣∣
p

=
n∑

j=1

∂x̃j

∂xi

∣∣∣∣∣
p

∂

∂x̃j

∣∣∣∣∣∣
p

=
∂x̃j

∂xi

∣∣∣∣
p

∂

∂x̃j

∣∣∣∣∣
p

(1.3)
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using Einstein summation convention over j in the last equality.
Definition 1.3.4. Tangent vectors X = ci ∂

∂xi

∣∣
p
∈ TpM act on smooth functions f : M →

R (f ∈ C∞(M) = C∞(M → R)) via

X · f = dfp(X) = ci
∂f

∂xi

∣∣∣∣
p

∈ R

This solidif Using the tangent space, its dual space can be defined
Definition 1.3.5. The cotangent space to M of p is defined as

T ∗
pM = R · {dx1

p, . . . , dx
n
p} (1.4)

where dxi
p : TpM → R are linear functionals satisfying dxi

p

(
∂

∂xj

∣∣
p

)
= δij.

If you stare at this hard enough, you will realise it basically evaluates to making sure
that you have the correct dxi associated with the correct ∂

∂xi . The dxi
p also obey similar

transformation laws:

dxi
p =

∂xi

∂x̃j

∣∣∣∣
p

dx̃j
p (∀i), (1.5)

Now, we can consider bundles, where the above definitions are defined for every p ∈ M :
Definition 1.3.6. Define

TM :=
⊔
p∈M

TpM T ∗M :=
⊔
p∈M

T ∗
pM (1.6)

where TM is termed the tangent bundle and T ∗M the cotangent bundle. Notation:
(p, v) ∈ TM where p ∈ M, v ∈ TpM and likewise for T ∗M . Additionally,⊔

α∈A

Aα =
⋃
a∈A

{(α, x) : x ∈ Aα}

is the disjoint union.

Both of these bundles are themselves smooth manifolds (non-examinable).
Definition 1.3.7. A vector field is a smooth map ξ : M → TM such that

ξ(p) = ξp ∈ TpM∀p ∈ M (1.7)

Namely, a vector field is a smooth choice of assigning tangent vectors to every point
p ∈ M . Hence, you can think of TM as every possible vector field.
Definition 1.3.8. A 1-form is a smooth map ω : M → T ∗M such that ωp = ω(p) ∈
T ∗
pM∀p ∈ M .

In the lectures, 1-forms and vectors are defined in a physical sense in Week 2. In R, the
1-form is simply f(x)dx, the regular ‘infinitesimal area’. We shall see the earlier ramble
of maths will realise itself in SR, and later GR. For now, if you’re interested, here’s some
more definitions.

‘Smooth functions between manifolds induce maps on their (co)tangent bundles.’ (Maxwell
Stolarski).
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Definition 1.3.9. Let M,N be smooth manifolds and f : M → N is smooth. Then the
differential of f , denoted f ∗ := df : TM → TN is defined as f ∗X = dfp(X) ∈ Tf(p)N

dfp

(
X = Xj ∂

∂xj

∣∣∣∣
p

)
= Xj ∂fα

∂xj

∣∣∣∣
p

∂

∂yα

∣∣∣∣
f(p)

(1.8)

where X ∈ TpM is a tangent vector as in Definition 1.3.4. Here, (xi), (yα) are local
coordinates of M,N respectively. The physics behind this definition can be elucidated:
TpM can be thought of as all possible velocities at p ∈ M , with TM every possible set of
velocities for every p ∈ M . Since f maps points in M to points in N , we need to include
the change of f(p) ∈ N via the chain rule, which then just ends up being the velocities
(tangent vectors) to f(p). Hence the differential tells you how f changes the tangent
vectors in TpM . You will notice the derivatives on the LHS& RHS doesn’t appear to be
acting on anything, but it will act on a function g : N → R which is smooth, and would
be some quantity of interest. This will be important later as it will ensure that we can
‘differentiate’ things.

Similarly, the pull-back is defined as

f∗ : T
∗
f(p)N → T ∗

pM (f∗ω)p (X) = ω (dfp(X))

In local coordinates as above,

f∗
(
ωαdy

α
f(p)

)
= ωα

∂fα

∂xi

∣∣∣∣
p

dxi
p

The cotangent space is the space of linear functions ωα acting on tangent vectors. Thus
f∗ effectively measures the distance travelled on M after travelling some distance on N .

1.3.2 Tensors
Every physicist knows a tensor transforms as a tensor and that’s that. In this context,
we will think of tensors as multilinear maps on a finite-dimensional vector space V and
its dual space V ∗:
Definition 1.3.10. A contravariant k-tensor is a multilinear map

F : V × . . .k times × V → R

A covariant l-tensor is a multilinear map (i.e. linear in each entry)

F : V ∗ × . . .l times × V ∗ → R

A
(
k
l

)
tensor is a multilinear map

F : (V ∗ × . . .k times × V ∗)× (V × . . .l times × V ) → R

where V ∗ = {ω : V → R | ω linear} is the space of linear functionals.

So here, the ‘dimensions’ of the tensor matters and this affects the notation (including
raising and lowering etc.).
Definition 1.3.11. We define

• T k(V ) the set of contravariant k-tensors
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• Tl(V ) the set of covariant l-tensors

• T k
l (V ) the set of

(
k
l

)
-tensors

Proposition 1.3.1. Rank-1 tensors can satisfy:

• T 0
1 (V ) = T1(V ) = V ∗ - namely that covariant 1-tensors are linear functionals, aka

they are 1-forms

• T 1
0 (V ) = T 1(V ) = V - namely that contravariant 1-tensors are vectors!

This follows directly from the definitions.

vµ is a vector ≡
(
1

0

)
tensor (1.9)

vµ is a 1-form ≡
(
0

1

)
tensor (1.10)

So reducing the complicated diff geo definitions from earlier into something tangible:

• A 1-form is a linear function which takes a vector and returns a scalar.

• A vector is a linear function which takes a 1-form and returns a scalar.

• So a
(
k
l

)
-tensor takes k 1-forms and l vectors to map into a scalar.

Remark. It is important to see how this comes out from the nonsense of differential
geometry. From Definition 1.3.8, a 1-form is an infinitely differentiable map from a point
in the manifold to the cotangent bundle. But the cotangent bundle is a union of maps to
R, so a 1-form does map vectors to scalars! Similarly from Definition 1.3.7 for vectors, a
vector field maps from M into a particular tangent space, consisting of (tangent) vectors,
which act on smooth real functions (Definition 1.3.4) such as 1-forms (Definition 1.3.9),
so indeed vectors map 1-forms to real numbers.

In previous courses of physics, you have accepted how to ‘multiply’ tensors, e.g.

Fαβγ
δσ Gµν

η := Hαβγµν
δση

This definition is formalised as the infamous tensor product
Definition 1.3.12. If F ∈ T k

l (V ) and G ∈ T p
q (V ), then the tensor product F ⊗G is

F ⊗G : (V ∗)l+q × V k+p → R
(F ⊗G) (ω1, . . . , ωl+q, v1, . . . , vk+p) :=

F (ω1, . . . , ωl, v1, . . . , vk)G (ωl+1, . . . , ωl+q, vk+1, . . . , vk+p) .

This forms a
(
k+p
l+q

)
tensor.

Definition 1.3.13. A
(
k
l

)
-tensor field on a manifold M assigns a tensor to every p ∈ M

- it’s the vector field analogue for tensors.

We write
T k
l (M) =

{(
k

l

)
tensor fields

}
(1.11)

This is also a vector space because you can multiply tensors by scalars and keep its
properties.
Remark. This definition actually makes more sense with tensor bundles, but not really
needed so I have skipped over it.
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T1(M) = {1-forms on M}
T 1(M) = { vector fields on M}

(1.12)

Additionally, it is possible to define a map over k-copies of T 1(M) and l copies of T1(M)
mapping to the space of smooth functions (on vector fields or 1-forms) which is linear in
every entry, namely
Lemma 1.3.1. (Tensor Characterization Lemma). A map

τ : T 1(M)× · · ·k times × T 1(M)× T l1(M)× · · ·l times × T l1(M) → C∞(M)

where
τ(. . . , fX + gY, . . .) = fτ(. . . , X, . . .) + gτ(. . . , Y, . . .)

for f, g ∈ C∞(M), the space of smooth functions.

τ comes from a
(
k
l

)
tensor field F ∈ T k

l (M) as above if and only if τ is C∞(M)-linear in
each entry.

Why is this important? Later, we will see objects that are multilinear maps but are not
tensors in the way we have defined them above. This is because they have slightly different
transformation rules because of their construction. The main example are Christoffel
symbols, which by themselves are not tensors. However we can apply operations such as
the gradient and multiplying Christoffel symbols together, to make a tensor (Riemann
curvature tensor).

1.3.3 Metrics
GR is all about finding the right metric (see Chapter 2) for different situations. However
it is important to analyse metrics, what they are, how they work and their link to the
manifolds and tensors above. In SR and GR, we work with a pseudo-Riemannian
metric.
Definition 1.3.14. Let M be a manifold. A (fully-covariant) pseudo-Riemannian
metric g is a

(
2
0

)
-tensor field g ∈ T 2

0 (M) which is symmetric: gp(v, w) = gp(w, v) ∀p ∈ M
and v, w ∈ TpM .

The pair (M, g) is a pseudo-Riemannian manifold.

In GR, we use index notation, so we often write it as gαβ.

The key example is the Minkowski metric ηµν defined in SR. Written in matrix form:

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (1.13)

where we are using (−+++) signature for the rest of this course. This is indeed symmetric.

It is a fact that not every smooth manifold can have a pseudo-Riemannian metric, which is
why half the problem in GR is finding a suitable metric - it must obey physical constraints
and observations WHILST also not breaking maths.

Metrics also satisfy a very neat relationship, which is worth knowing
Proposition 1.3.2. The metric gαβ has a well-defined inverse gαβ and satisfies

gνγgγβ = δνβ (1.14)

10



Raising and Lowering operators

We’ve been doing this all the time in physics, time to see why. As always, let (M, g) be
a pseudo-Riemannian manifold.
Definition 1.3.15. The lowering map

L : TM → T ∗M X 7→ L(X) := g(X, •), (1.15)

where the bullet is an element of another tangent space (recall TM is the union of tangent
spaces which is all vectors tangent to a point p ∈ M). In local coordinates,

L(X) = g

(
X i ∂

∂xi
, •
)

= gkjdx
k

(
X i ∂

∂xi

)
dxj(•) = gkjX

iδki dx
j = gijX

idxj

As physicists, this notational garbage really boils down to

L(X) = Xjdx
j = gijX

idxj (1.16)

so we really see that

lowering an index is the same as multiplying by the fully-covariant metric tensor.

Definition 1.3.16. The raising map

R : T ∗M → TM (1.17)

In local coordinates,
ω = ωidx

i 7→ R(ω) := gijωi
∂

∂xj

where we write ωi := gijωj.

raising an index is multiplying a 1-form by a fully-contravariant metric tensor.

Coordinate Transforms

The last part of maths needed for this course is coordinate transforms and finding the
metric. Suppose we can accurately define a position vector (from some reference origin)
like in Minkowski flat space-time X(x1, x2, . . .). We can find the displacement vector as

dX = dxidX

dxi

Now take 2 arbitrary directions (could be curvy like in Fig. 1.2) - we can do the same
calculation:

|dX|2 =
(

2

min(i, j)

)
(∂xiX) · (∂xjX)dxidxj = gijdx

idxj

Specifically,

Define ∂X

∂xi
:= ei gij = ei · ej (1.18)

and in GR, this generalises to gµν = eµ · eν

11



Figure 1.2: Arbitrary 2D coordinates.

Let’s take polar coordinates as an example. In the Cartesian plane, any position vector
R = xî+yĵ with i, j the regular unit vectors for x, y respectively. We suppose this vector
has length r =

√
x2 + y2. In polar coordinates, this can be written as a radial vector out

of length r, oriented at some angle θ, so R = rer. In this case, er = r̂ is the radial unit
vector. But we know there is a second vector e2 which we can find, because originally
there were 2 basis vectors î, ĵ, and by some linear algebra, we know the total number
of basis vectors must be the same for any vector space, even if the basis is not unique.
Following a similar procedure to above,

e2 =
∂R

∂x2
=

∂R

∂θ
= r

d

dθ
er = r

d

dθ
r = rθ̂ = eθ (1.19)

This new coordinate vector is not a unit vector. In any case, we can use the definition
of gij and find:

gij =

(
1 0
0 r2

)
(1.20)

and the interval becomes ds2 = dr2 + r2dθ2

1.4 Special Relativity
We’ve done this before, but now write it in notation that is ready for GR. Consider 2
frames S and S ′ where S ′ moves at speed β = v/c relative to S, along the x direction.
The standard Lorentz Transforms (LT) apply:

x′ = γ(x− vt) t′ = γ(t− xv/c2) γ = (1− β)1/2, (1.21)

and of course, y = y′, z = z′ in this scenario. We can define (x0, x1, x2, x3) = (ct, x, y, z).
Then

xµ′
=

3∑
ν=0

Λµ′

ν x
ν = Λµ′

ν x
ν , (1.22)

where

Λµ′

ν x
ν =


γ −γβ 0 0

−γβ γ 0 0
0 0 1 0
0 0 0 1

 . (1.23)
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Lemma 1.4.1.

Λµ
νΛ

ν
σ = δµσ =

{
1 µ = σ

0 µ 6= σ
(1.24)

Definition 1.4.1. The interval is defined as

s2 = −(x0)2 + (x1)2 + (x2)2 + (x3)2 (1.25)

and is invariant under LT

However, this assumes that the reference frame has a well-defined origin to measure xµ

from. We will soon see this is basically impossible in curved space.
Definition 1.4.2. The interval (oof) for differential changes is defined as

ds2 = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2 (1.26)

and is also an invariant scalar.
Remark. This module uses the (−+++) signature whereas other sources may use (+−
−−). Nothing different, just causes some sign changes in equations.
Definition 1.4.3. The contravariant 4-position is defined as

xµ = (ct, x, y, z) (1.27)

We can lower the index and get the covariant 4-position,

xµ = (−ct, x, y, z) (1.28)

Let τ be the proper time, which is the time elapsed in an inertial frame. Then dt = γdτ
and
Definition 1.4.4. The contravariant 4-velocity is the proper time derivative of the
4-position

dxµ

dτ
= lim

dτ→0

xµ(τ + dτ)− xµ(τ)

dτ
= uµ = (c, vx, vy, vz) (1.29)

Note the missing γ here, since in the frame where proper time is measured, the observer
is stationary in that frame and γ = 1.

We can also take gradients of 4-vectors.
Definition 1.4.5. The covariant 4-gradient with respect to a contravariant 4-vector is
defined as

∂

∂xα
= ∂µ =

(
1

c

∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
= (∂0, ∂1, ∂2, ∂3) (1.30)

The contravariant 4-gradient (w.r.t covariant terms)

∂

∂xα

= ∂µ =

(
−1

c

∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
= (−∂0, ∂1, ∂2, ∂3) (1.31)

1.4.1 Minkowski space-time
The interval can be written as

ds2 = ηµνdx
µdxν (1.32)

where ηµν is the Minkowski metric tensor with components η00 = −1 and ηii = 1 for
i = 1, 2, 3. All other components are 0. It is a symmetric bilinear form (whatever
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that means) and a type
(
0
2

)
-tensor. By the definition of a tensor, we see that it has 2

components and accepts two vectors to return a scalar.

In SR/Minkowski space-time, the 4-position x = (ct, x, y, z) = xµeµ where ei is the basis
vector whose components are 0 everywhere except the ith position, where it is 1. Indeed
since Minkowski is 4D, there are 4 basis vectors. As before, we can transform reference
frames using the

1.4.2 The Lorentz Group
The group (in the mathematical sense) of all Lorentz transformations forms the Lorentz
group. In lectures, you may have seen that the Lorentz transform ‘tensor’ Λα′

α is not a
tensor - this is because it explicitly depends on the 2 references frames you are transforming
between - you are describing how things (vectors) change. Even though in index notation,
it looks like a

(
1
1

)
-tensor, you can’t just write an expression for Λα′

α that is true in all
coordinate frames.

The Lorentz transform is actually a multilinear map, like tensors, and for Minkowski 3+1
spacetime (3 spatial, 1 time) with the (− + ++) signature, it lies in a non-abelian (Lie)
group with a matrix representation. This is related to a Problem Sheet question where
you are asked to transform the Energy-Momentum Tensor from a frame where a fluid is
at rest, to a frame where it is moving in the positive x-direction at speed v. Now, this
question is subtle. Since the fluid is moving in the positive direction in this frame, the
frame is moving in the negative direction −v, so all the −γβ terms become γβ.

Tα′β′
= Λα′

α Λβ′

β T
αβ. (1.33)

Now, we have applied the Lorentz transform matrix twice, once for each index (since we
have a

(
2
0

)
-tensor). You might go ahead and start evaluating, but take a step back because

we are trying to do matrix multiplication here. So actually,

Tα′β′
=


γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1




ρ0c
2 0 0 0

0 p0 0 0
0 0 p0 0
0 0 0 p0




γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1

 (1.34)

because η = ΛTηΛ for some matrix η. But why is this the case? Well remember that
the interval Eq. (1.32) is invariant under all frames, and this is how we define a Lorentz
transform between primed and unprimed coordinates:

x′αηαβx
′β = xµηµνx

ν (1.35)

Juggling some more indices,

xµΛα
µηαβΛ

β
νx

ν = xµηµνx
ν ,

Λα
µηαβΛ

β
ν = ηµν

(1.36)

Now, the α index is selecting rows, whereas β is selecting columns, the first Λ is actually
the transpose (although in this case, Λ is symmetric so ΛT = Λ).

This corresponds identically to the group of 4-dimensional orthogonal matrices which
satisfy

RT I4R = I4 (1.37)
where I4 is the 4× 4 identity matrix. In the case of Lorentz transforms, the metric tensor
also satisfies this relationship.
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1.5 Tensor Equations
So we have been doing a lot of work trying to incorporate tensors into our description
of SR - why? It is always about invariants. Suppose we have a 4-vector xα which
transforms as follows:

xα 7→ xα′
(x0, x1, x2, x3), (1.38)

The vectors, 1-forms and
(
0
2

)
tensors transform as

vα
′
=

∂xα′

∂xα
vα (1.39)

vα′ =
∂xα

∂xα′ vα′ (1.40)

gµ′ν′ =
∂xµ

∂xµ′

∂xν

∂xν′
gµν (1.41)

Memorising is a bit of a stretch but you should know the intuition behind these
transforms.

This is because ds2 is invariant across reference frames, i.e. each set of coordinates satisfies

ds2 = gµ′ν′dx
µ′
dxν′ = gµνdx

µdxν (1.42)

Therefore using how coordinate transforms Eq. (1.5), then

gµ′ν′dx
µ′
dxν′ = gµν

∂xµ

∂xµ′ dx
µ ∂x

ν

∂xν′
dxν = gµνdx

µdxν (1.43)

which derives those set of 3 equations. To see this more concretely, we look at further
examples of coordinate transforms.

For a general
(
k
l

)
tensor F µ1,...µk

ν1...νl
, it obeys the transformation

F
µ′
1,...µ

′
k

ν′1...ν
′
l

=

[
l∏

i=1

∂xνi

∂xν′i

k∏
i=1

∂xµ′
i

∂xµi

]
F µ1,...µk
ν1...νl

(1.44)

1.5.1 Curved metric
Consider the surface of a sphere as in Fig.1.3(a) Define θ, φ as usual polar and azimuth
angles respectively. r is the measured distance along the surface from the (north) pole.
A is a point in the sphere such that

−→
AP = R sin θ. R is the radius of the sphere if it was

measured in 3D. The interval between 2 points is clearly

ds2 = dr2 +R2 sin2(θ)dφ2

but r = Rθ, so we can substitute this in above and

ds2 = dr2 +R2 sin2(r/R)dφ2

This is an intrinsic definition of ds2 and gij since the quantities used all lie in the manifold,
and there is no explicit use of the component vectors.
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Figure 1.3: (a) General sphere manifold. (b) Same sphere but with coordinate system in
the x− y plane. Screenshots from Prof. Tony Arber’s lectures.

1.5.2 Alternate metric
Now let’s look at Fig. 1.3(b) where our r is now the radius of the circle in an x− y plane.
The sphere is characterised by x2+y2+z2 = R2. But by definition, r2 = x2+y2. Thus we
can describe this sphere with a ”cylindrical polar” system since we have a vertical change
dz, an azimuth change dφ and an r change dr and thus

ds2 = dr2 + r2dφ2 + dz2

But we know that dr, dz are not independent, since r2 + z2 = R2 =⇒ rdr + zdz = 0.
Substituting this into ds2 gives

ds2 = dr2
(
1 +

r2

z2

)
+ r2dφ2

we can now eliminate z directly with z2 = R2 − r2

ds2 = dr2
(
1 +

r2

z2

)
+ r2dφ2

1 +
r2

z2
=

R2

R2 − r2
=

1

1− r2

R2

=⇒ ds2 =
dr2

1− r2

R2

+ r2dφ2

• Coordinate singularity at r = R

• At r = R, dr = 0

• Coordinate singularity can be removed with r = R sinχ

• This is still a metric because it’s symmetric
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1.5.3 Invariance of Tensor Equations
We will see why tensor equations are so useful. Tensors involve derivatives to change
coordinates. If we have a classical problem in any coordinate system,

F = m
dv

dt

then this is a valid vector/tensor equation, assuming that both sides are written in the
same coordinate system. But does Fi = mdvi/dt is a valid tensor equation? NO. If we
assume that Fi = mdvi/dt is true in a Cartesian plane, we cannot just swap i with say r
from a polar coordinate system and expect it to be the same.

Proposition 1.5.1. Components of the derivative of a vector are not the same
as the derivative of the components of a vector, because vectors change between
coordinate systems

Proof. The proof is easy and not really the point of this module, it hasn’t come up before.
Set v = vrr̂+ vθθ̂ and differentiate it with respect to time and find the radial component
of the acceleration. You will see the expression is very much dependent on r̂, θ̂. We need
a different type of derivative to reconcile this difference.

Theorem 1.5.1. If, in a reference frame S, a tensor equation Aαβ = Bαβ (whatever it
may be, it could be more complicated, as long as both sides are tensors), then the equation
is true in any frame.

Proof. Let Aαβ = Bαβ in xµ frame. Transform to xµ′ then if A,B are tensors then

∂xα

∂xα′

∂xβ

∂xβ′︸ ︷︷ ︸Aα′β′
=

∂xα

∂xα′

∂xβ

∂xβ′︸ ︷︷ ︸Bα′β′

same at all points in space.
Aα′β′

= Bα′β′

tensor equations are invariant.

1.6 Energy-Momentum tensor T µν

Definition 1.6.1. The instantaneous rest frame (IRF) is a frame in which the 3-
velocity of the body is zero at that instant of time.

Suppose we have dust, modelled at zero temperature, non-interacting particles. In the
instantaneous rest frame (IRF), the number density is n. In the LT frame, n′ = γn.
However, Lorentz contraction occurs only in the direction of the boost. What this means
is in the LT frame, the number density will look different depending on which direction
we go - n′ is effectively a vector. Therefore, we construct a 4-vector:

Nα = nvα = (nγc, nγv) = (n′c, n′v) (1.45)
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1.6.1 Conservation Laws
In order to conserve particle number, systems like in fluid mechanics obey the continuity
equation

∂n

∂t
+∇ · (nv) = 0 (1.46)

which holds in 3D, non-relativistic space. We can find a similar equation for Nα by taking
the 4-gradient ∇ = ∂

∂xα so

∇Nα =
∂Nα

∂xα
=

1

c

∂

∂t
(nγc) +

∂

∂xi
(γnvi) =

∂n′

∂t
+∇(n′v) = 0 (1.47)

Comma notation

Definition 1.6.2. Comma notation:

∇Nα =
∂Nα

∂xα
= ∂αN

α = Nα
,α (1.48)

Please stare at this and get the notation. A comma in the lower index position,
followed by an index means differentiate the quantity N w.r.t the contravariant
components xα!

1.6.2 Energy-momentum tensor
T µν = ρvµvν , (1.49)

where ρ is the mass density in IRF. We note T µν is a
(
2
0

)
-tensor.

• T 00 = ργ2c2 in IRF, and is equal to ρ′c2 is the energy density in LT frame

• Other components T ij for i = x, y, z = 1, 2, 3 is the flux of i-momentum in j-
direction.

• In IRF, v = 0 =⇒ T 00 = ρ′c2 = ρc2 is the only non-zero component of T µν

1.6.3 Conservation Laws from T µν

Consider the set of 4 equations
∂µT

µν = 0. (1.50)

Let’s look at ν = 0 and ν = 1. When ν = 0, we have

1

c

∂

∂t
(ργ2c2) +

∂

∂xi
(ργ2cvi) = 0 ⇐⇒ ∂ρ′

∂t
+∇ · (ρ′v) = 0 (1.51)

We have recovered the continuity equation, which must be obeyed! Now, suppose ν = 1.
We must evaluate ∂µT

µ1:

1

c

∂

∂t
(ργcγvx) +

∂

∂xi
(ργ2vivx) = 0 (1.52)

We expand the ∂xi term as follows:

∂

∂xi
(ργ2vivx) = ρ′

[
vx

∂vi
∂xi

+ vi
∂vx
∂xi

]
+ vivx

∂ρ′

∂xi
(1.53)
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Multiply the continuity equation by vx, it now becomes

vx
∂ρ′

∂t
+ vx

∂

∂xi
(ργ2vi) = vx

∂ρ′

∂t
+ vx

[
vi
∂ρ′

∂xi
+ ρ′

∂vi
∂xi

]
= 0 (1.54)

Since both Eq. (1.53) and Eq. (1.54) are equal to 0, we equate them to each other and
notice terms actually start cancelling out once all the derivatives are expanded! This
leaves us with

ρ′
∂vx
∂t

+ ρ′vi
∂vx
∂xi

= 0 (1.55)

for the ν = 1 component. Similar holds for the other ν values. Thus ν = 1, 2, 3 can be
captured entirely in one derivative. This is nothing more than the advective/material
derivative from fluid mechanics:

ρ′
Dv

Dt
= ρ′

[
∂

∂t
+ v · ∇

]
v = 0 (1.56)

The fact this equals zero implies that there are no forces - sure. For an ideal fluid (no
conduction, viscosity, radiation etc.) there will be a pressure flow ∇P , hence we really
need

ρ′
Dv

Dt
= −∇P (1.57)

So, it looks like our original T µν was slightly incorrect - it is now

Energy-Momentum Tensor

T µν =

(
ρ+

P

c2

)
vµvν + Pgµν (1.58)

The conservation laws in SR flat Minkowski space end up being as before. However in
GR, we need to generalise to the covariant derivative. This is a tensor equation and holds
in all reference frames - pretty cool!

1.7 Covariant derivative
We have been talking about many derivatives of coordinates and 1-forms so far. Earlier,
we introduced the definition for a general

(
k
l

)
-tensor and its tensor product with another(

p
q

)
-tensor. We now would like to combine these to talk about the derivative of vector

fields along an arbitrary manifold. In effect, we will be generalising derivatives of functions
in a Cartesian x, y plane that we are used to (and would love to have only have to do
that...).

By Proposition 1.5.1, the components of the derivative is not the same as the derivative
of the components. This generalises to tensors, where(

∂v

∂xα

)
α

6= ∂vα

∂xα

This is because the components vectors can change. Every vector v = vαeα. When
differentiating, we must use the product rule:

∂v

∂xβ
=

∂

∂xβ
(vαeα) =

∂vα

∂xβ
eα + vα

∂eα
∂xβ

(1.59)
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By homogeneity, the second term is a vector and still lies in the same tangent space of v.
Since the tangent space is locally Euclidean, we can describe it with a Euclidean vector
space and thus we can express derivative in the second term above as

Christoffel Symbols

∂eα
∂xβ

= Γγ
αβeγ (1.60)

• The Γγ
αβ are functions of xα (they also are locally-dependent).

• They are called connection coefficients/Christoffel symbols.1

We can substitute this expression for the derivative into Eq. (1.59) and get

∂v

∂xβ
=

(
∂vα

∂xβ
+ Γα

γβv
γ

)
eα (1.61)

What is important to note is that

∂βv
α and Γα

γβ are not tensors.

Remark. It helps to attempt to visualise what the Christoffel symbols represent geomet-
rically (even if you couldn’t care less). At a point xα in a manifold M , its tangent space
TxαM is spanned by some ei. If you move to some xα + dxα, then there is a new tangent
space Txα+dxαM spanned by some basis ei+dei. Since tangent spaces are locally Euclidean,
we can define a dot product of vectors. Dot product eγ on both sides of Eq. (1.60) to get

Γγ
αβ =

∂eα
∂xβ

· eγ

Hence, the change in the tangent space basis along each coordinate xi is of the form
(ei + dei − ei)/(x

α + dxα − xα) → ∂ei/∂x
α. However this is just the actual change - we

can then project this change along the different ei and we see that the Christoffel symbols
represent the derivatives of the basis along a basis direction.

As for the location of the indices, that doesn’t have any geometric meaning (to my knowl-
edge!), it comes out of having to satisfy index notation, and lowering and raising. Re-
member you can always lower and raise by the metric tensor.

Covariant derivative

Definition 1.7.1. The covariant derivative is a way to define a derivative along
tangent vectors of a manifold. It is related to linear connections.

∂v

∂xβ
:= vα;βeα (1.62)

where
vα;β = vα,β + Γα

γβv
γ (1.63)

1These come as a result of (linear) connections on pseudo-Riemannian manifolds. The maths is
ridiculously abstract (Differential Geometry) but effectively allows us to ”differentiate vector fields” on
manifolds.
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Proposition 1.7.1. The Christoffel symbol is symmetric in the lower indices (covariant
components).

Γα
γβ = Γα

βγ (1.64)

Proof. Prof. Tony Arber’s notes attached as an Appendix TODO

Theorem 1.7.1. Levi-Civita Connection Formula

Γγ
αβ =

1

2
gνγ (gνα,β + gνβ,α − gαβ,ν) (1.65)

Expanding out comma notation, this is (with dummy indices changed again)

Γk
ij =

1

2
gkl (∂jgil + ∂igjl − ∂lgij) (1.66)

Remark. Equivalent equation for the ‘Fundamental Lemma of Riemannian Geometry’. We
are working on pseudo-Riemannian manifolds, but luckily there is a theorem that allows
pseudo-Riemannian manifolds to have linear connections, every time, so we are fine.

Theorem 1.7.1 determines Γγ
αβ in terms of only the metric gαβ, removing the dependence

to have to specify the Christoffel symbols in every tangent space.

1.7.1 1-forms
Now we want to be able to differentiate 1-forms. We have successfully differentiated
vectors vα → vα;β, so for 1-forms we are trying to find an expression for vα;β.

We can consider some scalar invariant φ = pαv
α. Then φ;β = φ,β. The LHS evaluates to

φ;β =
∂pα
∂xβ

vα + pα
∂vα

∂xβ

However, we can substitute in Eq. (1.61), do some re-indexing and

Covariant derivative of 1-forms

pα;β = pα,β − Γγ
αβpγ (1.67)

1.8 Parallel Transport
Suppose you have a manifold M and within it, a path P parameterised by some variable
λ so that P → xα(λ). At each point in that path, we have a vector v assigned (a vector
field if you will), and we want to look at how v changes with respect to any path. Since
each point p has its own local tangent space, we can use the regular product rule as before:

dv

dλ
=

dvα

dλ
eα + vα

deα
dλ

(1.68)

Now, we can use the chain rule since eα is a function of the coordinates xα, which are
functions of some parameter λ.

deα
dλ

=
dxβ

dλ

deα
dxβ
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However, we know what the Christoffel symbols are, Eq, (1.60), so substituting this in
above:

dv

dλ
=

(
dvα

dλ
+ Γα

γβ

dxβ

dλ
vγ
)
eα (1.69)

The LHS is a scalar derivative of a vector: still a vector. Therefore the RHS must be a
vector and we can write it as

dv

dλ
=

Dvα

Dλ
eα (1.70)

This is the intrinsic/total/absolute derivative. But inside Dvα/Dλ, we can expand
dvλ/dλ with the chain rule

dvα

dλ
=

dxβ

dλ

dvα

dxβ

Dvα

Dλ
=

(
∂vα

∂xβ
+ Γα

γβv
γ

)
dxβ

dλ
= vα;β

dxβ

dλ

(1.71)

Now, we said λ is an arbitrary parameter, so we are free to choose it - we can set it
equal to the proper time τ such that dxβ/dτ = uβ, the 4-velocity. Therefore, the total
derivative, measuring the change of a vector, equals to

Dvα

Dτ
= vα;βu

β (1.72)

1.8.1 Parallel transport
Definition 1.8.1. A vector field along a curve is parallel if

dv

dλ
=

Dvα

Dλ
eα = 0, (1.73)

i.e., a vector is being parallel transported if it satisfies this equation.
A vector field V ∈ Txα(λ)(M) on M is said to be parallel if it’s parallel along every curve
xα(λ)

This effectively generalises what it means for a vector to be parallel to its previous self as
it moves along a path. Some questions may arise then:

1. Can you always have parallel vector fields as you move along a curve γ?

2. Can you parallel transport your own tangent vector (yes, see later).

The first question is answered by the Theorem of Parallel Translation, which says there
exists a unique vector field for any curve, for every λ (assuming of course, the curve is
parameterised by λ). Parallel transport is not always intuitive, and there are 3 main cases

• Flat space, (x, y, z) coordinates - vα unchanged.

• Flat space, (r, θ) coordinates - v unchanged bu vα changes.

• Curved space- vα changes and v may change due to parallel transport.

To demonstrate the latter case, we look at a sphere, and 2 particular paths shown in
Fig. 1.4. On the left, we see that a great circle route, with v perpendicular, keeps v
unchanged. On the right however, v definitely changes, and this will be the case for any
non-great circle path on a sphere. In both cases, vα changes.
Remark. I glossed over this, but when we ‘look at’ a surface or manifold, we are embedding
this into a higher spatial dimension. This makes life (and maths) easier for us. However,
we live in the universe manifold, so we cannot look at our universe from a higher spatial
dimension (anyone up to make the fourth spatial dimension?)
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Figure 1.4: (left) Great circle path on a sphere with v pointing perpendicular to the path.
(right) non-great circle path.

1.9 Geodesics

Definition 1.9.1. A line is straight if it parallel transports its own tangent vector

Examples:

• In flat, Euclidean space, every tangent vector is parallel to the line, so the tangent
vector is indeed parallel transported

• Take any 2 points on a sphere - the ‘straight line path’ between those is any great
circle path which the 2 points lie upon.

Since the parallel transport vector vα equals the tangent vector uα, a straight line satisfies
vα = uα. Hence, instead of vγ in Eq. (1.71), we substitute it for a generic dxγ/dλ, and do
the same for every occurrence of vα. We therefore get

Geodesic equations

d2xα

dλ2
+ Γα

γβ

dxβ

dλ

dxγ

dλ
= 0 (1.74)

Equivalently,
ẍα + Γα

γβẋ
βẋγ = 0 (1.75)

Usually, λ = τ for massive particles - light is different.

Physically, the geodesic equations in Eq. (1.74) generalise the force-free motion dv/dτ = 0
in SR. In GR, gravity is not a force in the Newtonian sense, but it is a thing which distorts
the space-time manifold, i.e. gαβ changes. This means

Solutions of the geodesic equation give orbits in GR.

To solve a problem, we first would need to obtain gαβ. Then we can find Γγ
αβ as per

Theorem. 1.7.1 and then solve the geodesic equation.

• To find gαβ, we need to specify 10 independent components. Remember in four
dimensions, there are 16 total components, but it is symmetric and so we need only
find the diagonal and one of the upper or lower triangles.

• The general, 4 dimensional Γγ
αβ has 40 independent components.
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1.9.1 Euler-Lagrange Equations
As you know, the Euler-Lagrange (EL) equations relate the position, momenta and en-
ergies of particles together. In general, the Lagrangian L = L(t, x1, . . . , xn, ẋ1, . . . , ẋn)
meaning it has 2n + 1 independent variables for an n-body system. For this module, we
will assume time-independence, so we have 2n components2. The positions must lie on
the manifold M where the problem lies, and it also involves its derivatives, which lie in
the tangent space, and so the Lagrangian must map from somewhere inside the tangent
bundle TM and produce a real number (the energy difference). Hence, the Lagrangian,
classically defined as T − V , generalises to

L : TM → R L(xα, ẋα) =
1

2
hxα(ẋα)− V (xα), (1.76)

where V : M → R is the potential function, (xα, ẋα) are functions of λ and hxα :
TM → R is a kinetic energy function with respect to the tangent space about xα. We
can of course still choose our own Lagrangian for a given problem, they don’t have to be
in the exact same form but must satisfy the same criteria. In our case, let’s have

L(xα, ẋα) =
1

2
gαβẋ

αẋβ (1.77)

Euler-Lagrange equation

d

dλ

(
∂L

∂ẋα

)
− ∂L

∂xα

= 0 (1.78)

You can also write it with a superscript instead.

Substituting this L into the EL equation gives the geodesic equation.

Proof. I have definitely gotten indices mixed up somewhere so please tell me where they
are wrong! We show this by direct substitution into the EL equation, and use superscripts
instead of subscripts (multiplying by the metric tensor will correct everything).

∂L

∂ẋα
= gαµẋ

µ (1.79)

We are effectively differentiating a square. Remember there is implicit summation, so
you can always fix one of the indices as α and sum over the other. You do this twice,
once for each index, but then you see by rearrangement of the double indices that you
are double counting each term, hence the factor of 2, which cancels out the 1/2. Now, we
differentiate this w.r.t λ and use the product and chain rules:

d

dλ
(gαβẋ

β) =

(
dgαβ
dλ

ẋβ + gαβ
d2xβ

dλ2

)
(1.80)

=
∂gαβ
∂xδ

ẋδẋβ + gαδẍ
δ (1.81)

= gαβ,δẋ
δẋβ + gαδẍ

δ (1.82)

where the chain rule was used in the second equality, as well as reduction down to funny
notation. Replace α → µ, β ↔ ν and we can split the gµν,δ term into 2 terms and rearrange

2Time-independence is actually needed, since a time-dependent Lagrangian means a time-dependent
Hamiltonian. By Noether’s theorem, energy would NOT be conserved, which Einstein did not want.
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indices: gµν,δ =
1
2
(gµν,δ + gνδ,µ) and we get

d

dλ
(gµβẋ

β) =
1

2
(gµν,δ + gνδ,µ) ẋ

δẋν + gµδẍ
δ

We now must deal with the other derivative term - this is way easier, since the only term
that is a function of xα is the metric, and so

∂L

∂xδ
=

1

2

∂gµβ
∂xδ

ẋµẋβ =
1

2
gµν,δẋ

µẋν (1.83)

To correct the indices to be the same as Eq. (1.9.1), set ν ↔ δ and put everything into
the Euler-Lagrange Eq. (1.78):

1

2
(gµν,δ + gνδ,µ) ẋ

δẋν + gαδẍ
δ − 1

2
gµν,δẋ

µẋν = 0 (1.84)

⇐⇒ gδµẍ
µ +

1

2
(gµν,δ + gνδ,µ − gµδ,ν)︸ ︷︷ ︸

=Γµδν

ẋδẋν = 0 (1.85)

To complete the final step, we contract with the inverse metric tensor gµδ on both sides
to raise the µ index to get

ẍµ + Γµ
δν ẋ

δẋν = 0 (1.86)

Solving the EL is usually easier than finding Γδ
αβ and solving the geodesic equation -

mainly because you don’t have to labour away to find 40 components and we all know
how to solve an EL anyways.

Example: Schwarzchild metric for black holes

ds2 = −c2
(
1− 2GM

c2r

)
dt2 +

(
1− 2GM

c2r

)−1
dr2 + r2dθ2 + r2 sin2 θdφ2 (1.87)

The Lagrangian L is then L = gαβẋ
αẋβ :3

L = −c2
(
1− GM

c2r

)
ṫ2 +

ṙ2(
1− 2GM

c2r

) + r2θ̇2 + r2 sin2(θ)φ̇2 (1.88)

From this point on, we can find the equations for each component, such as θ:

d

dλ

(
2r2θ̇

)
− 2r2 sin θ cos θφ2 = 0 (1.89)

We can also find constants of motion. This occurs when the Lagrangian is explicitly
not a function of one of the position variables. In the Schwarzchild case, this is φ, since
no φ term occurs and so

r2 sin2(θ)φ̇2 = constant (1.90)

3I ignored the factor of 1/2 for convenience and to match the lecture notes going forward.
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1.9.2 Slow motion in a weak field
Slow motion implies γ = 1. Hence, ẋi=1,2,3 is negligible compared to ẋ0 (remember ẋ0 ∼ c).
Considering its geodesic equation,

ẍα + Γα
00ẋ

0ẋ0 = 0 (1.91)

If the metric is stationary then all gαβ,0 = 0 in Γγ
βα. Hence, Γ0

00 = 0. For the spatial
coordinates, we have

Γi
00 =

1

2
gνi (gν0,0 + g0ν,0 − g00,ν)

For a weak field, we can treat the situation as a minor perturbation to Minkowski flat
space time, so

gαβ ∼ ηαβ + hαβ, |hαβ| � 1 (1.92)

Γi
00 ∼

1

2
ηνi
(
−∂g00
∂xν

)
(1.93)

Now, remember the Minkowski tensor is 1 in the spatial components, −1 otherwise. We
can sum over ν, but note that ηνi = 0 whenever ν 6= i, so we only keep ν = i terms.
Hence, −1 + 1 + 1 + 1 = 2. 2× 1/2 = 1. Therefore,

Γi
00 = −∂g00

∂xν
(1.94)

Substitute this into the geodesic equation and we get
1

c2
d2xi

dt2
=

1

2

∂

∂xi
g00 (1.95)

This looks like Newton’s equation,
d2xi

dt2
= −∇φ (1.96)

, where φ is the gravitational potential (which remember, GR doesn’t know about, every-
thing is a result of manifold distortion). Equating coefficients,

g00 = −1− 2

c2
φ (1.97)

So Newton’s theory of gravitation is a non-relativistic, low mass (field is treated as a
perturbation) regime of GR.

1.10 Curvature
We have conquered tensors, covariant derivatives, parallel transport and the Christoffel
symbols. We are going to start to put everything together as we discuss curvature.

1.10.1 Local flatness
Suppose we have a generic transformation

gµ′ν′ =
∂xµ

∂xµ′

∂xν

∂xν′
gµν

It is always possible to find xα′
= xα′

(xα) such that gα′β′ = ηα′β′ , but this is locally
around xα, since only the space near it can be considered ‘locally flat’.

You can also choose xα′ such that gαβ,γ = 0!
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Definition 1.10.1. A frame with gαβ = ηαβ and gαβ,γ = 0 are local inertial frames.

These are free falling by the equivalence principle. This implies space-time is locally flat.

What you cannot do, is find xα′ such that

∂α∂βgδγ = 0 gδγ,αβ = 0

1.10.2 Riemann Curvature
Let us now consider a small region on a manifold M that is curved, that is parameterised
by 2 coordinates x1, x2, such that the region ABCD is shown in Fig. 1.5. We consider our

Figure 1.5: Region in curved space parameterised y contravariant coordinates (x1, x2).

parallel transport vector vα, which remember, satisfies Definition 1.8.1, that is

Dvα

Dt
= vα;β = vα,β + Γα

βγv
β = 0

So for our path ABCD in Fig. 1.5, we evaluate each contribution separately and add
them up:

A → B:
∂vα

∂x1
= −Γα

β1v
β

We assume the variations δxi are small and use a finite difference approximation

∂vα

∂x1
≈ vα(B)− vα(A)

δx1
=⇒ vα(B) = vα(A)−

(
Γα
γ1v

γ
)
x2 δx

1 (1.98)

Since path CD is the same as AB but in reverse, we get a similar expression with a sign
difference and slightly different evaluation:

vα(D) = vα(C) +
(
Γα
γ1v

γ
)
x2+δx2 δx

1 (1.99)
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Adding up the 2 contributions: AB + CD gives

AB + CD = (vα(B)− vα(A)) + (vα(D)− vα(C)) (1.100)
=
(
Γα
γ1v

γ
)
x2+δx2 δx

1 −
(
Γα
γ1v

γ
)
x2 δx

1 (1.101)

=

[
∂

∂x2

(
Γα
β1v

β
)]

δx1δx2. (1.102)

We can repeat the same calculation for the paths BC and DA, with the same logic. Only
this time, the derivative is over x2, so the final term will be a partial derivative w.r.t x1.
Additionally, the Christoffel symbol will be Γα

β2 instead. You will also introduce a minus
sign in front because C and A are now at the ends of the 2 paths, BC and DA. Thus,
summing over ABCD:

δvα = δx1δx2

[
− ∂

∂x1

(
Γα
β2v

β
)
+

∂

∂x2

(
Γα
β1v

β
)]

(1.103)

Now, let’s expand the derivatives a wee bit with the product rule:

∂

∂x1
Γα
β2v

β =
(
∂x1Γα

β2

)
vβ + Γα

β2

(
∂x1vβ

)
(1.104)

∂

∂x2
Γα
β1v

β =
(
∂x2Γα

β1

)
vβ + Γα

β1

(
∂x2vβ

)
(1.105)

Collecting everything into δvα and rearranging in a suggestive form:

δvα = δx1δx2
[(
∂x2Γα

β2 − ∂x1Γα
β2

)
+
(
Γα
β1∂x2 − Γα

β2∂x1

)]
vβ

But we can have a further simplification, particularly of the Γα
βγ∂xµ := Γα

βγ∂µ terms. Recall
that we are parallel-transporting vα, so it satisfies

(
∂xαvβ + Γα

βγv
γ
) dxβ

dλ
= 0

Now, since we are moving along the path, dxβ/dλ is certainly not zero, so by equivalence,
∂αv

β = −Γα
βγv

γ. Substituting this in to Eq. (1.10.2) and ensuring the indices are arranged
appropriately, we have

δvα = δx1δx2
[(
∂x2Γα

β2 − ∂x1Γα
β2

)
−
(
Γα
1σΓ

σ
β2 + Γα

2σΓ
σ
β1

)]
vβ

Now, let’s count indices here. The ∂xµΓα
βγ = ∂µΓ

α
βγ = Γα

βγ,µ terms have 4 independent
indices, and the derivative here is the contravariant 4-gradient of a Christoffel symbol
which is a tensor. Pretty cool. Similarly, the Γα

1σΓ
σ
β2 is also a tensor by Lemma 1.3.1. So

what we really have constructed are components of a rank-
(
1
3

)
tensor. However, we can go

further. We only considered a 2-component manifold - if we have an arbitrary manifold
with coordinates (x1, . . . , xn) and an arbitrary path in that manifold, using
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we have equal amounts of pluses and minuses. We can also generalise our indices to µ’s
and ν’s (from 1’s and 2’s) and we get a new tensor:

Riemann curvature tensor

Rα
βµν = Γα

βν,µ − Γα
βµ,ν + Γα

σµΓ
σ
βν − Γα

σνΓ
σ
βµ (1.106)

1.10.3 Properties of the Riemann curvature tensor
In this subsection, we will state some properties of Rα

βµν without proof, that will be useful
later
Lemma 1.10.1. Let Rαβγδ = gαµR

µ
βγδ be the fully covariant Riemann tensor. Then

• It is antisymmetric when swapping individual pairs of lower indices: Rαβγδ =
−Rβαγδ = −Rαβδγ

• It is symmetric when swapping the two pairs of indices: Rαβγδ = Rγδαβ =

• It satisfies the First Bianchi Identity: Rαβγδ +Rαδβγ +Rαγδβ = 0

• It satisfies the Second/Differential Bianchi Identity Rαβγδ;µ+Rαβµγ;δ +Rαβδµ;γ = 0.
It is important in calculating the divergence of the Ricci tensor and thus is needed
for Einstein’s field equations

Remark. In lectures and in the handout, the two Bianchi identities are referred to as the
same thing. Just for clarity, I have distinguished them here with the same convention as
MA4C0 Differential Geometry.

The Riemann curvature tensor may differ by a ± in different sources.

1.10.4 Ricci tensor
GR doesn’t need the full Riemann curvature tensor, but we can consider its traces

Ricci curvature tensor

The Ricci curvature tensor Rβν ∈ T 0
2 (M) on a manifold M is defined as

Rµν = Rα
µαν = Γα

µν,α − Γα
αµ,ν + Γα

ασΓ
σ
µν − Γα

νσΓ
σ
µα, (1.107)

i.e., it’s the trace in the second index. To get this, it will help to start from Rα
βαν and

evaluate it. Then relabel β → µ and use symmetry in lower indices of Christoffel
symbols to get this.

Lemma 1.10.2. Rµν = Rνµ, i.e. the Ricci tensor is symmetric.

Proof. Follows directly from the definition and properties of Riemann curvature.

The Ricci tensor is unique up to ± sign due to the same reason for the Riemann tensor,
leading to the following
Lemma 1.10.3. Further contractions of the Riemann tensor:

• Rβ
βµν = 0

• Rα
βνα = −Rα

βαν
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Proof. The first point follows from the Riemann tensor and the second point from
Lemma 1.10.1.

Earlier, we found an expression for the Christoffel symbols entirely in terms of the metric
gαβ and its derivatives. Consequently, the Riemann curvature and Ricci curvature are
also entirely determined by the metric and its derivatives.

In the LIF (local inertial frame), gαβ = ηαβ and gαβ;γ = 0. Rµν then becomes much
simpler, as the product of Christoffel symbols becomes 0

Rµν = Γα
µν;α − Γα

αν,µ (1.108)

Proposition 1.10.1. Contracted Bianchi Identity. Let Rβγ be the Ricci curvature tensor.
It satisfies the following equation:

Rβγ;µ +Rδ
βµγ;δ −Rβµ;γ = 0. (1.109)

Note the middle term is a covariant derivative of the Riemann tensor. Funnily enough,
this is actually its divergence although it doesn’t look like a normal divergence from vector
calculus. That being said, I think we are far enough away from vector calculus at this
point so nothing is ‘normal’, it’s just ‘fine’.
Corollary 1.10.1. Let Rαβ be the contravariant Ricci curvature tensor. It satisfies

Rαβ
;α =

1

2
R;µg

µβ (1.110)

Proof. Assuming the contracted Bianchi identity, contract β and γ withj gβγ:

gβγ
(
Rβγ;µ +Rδ

βµγ;δ −Rβµ;γ

)
= 0

R;µ −Rδ
µ;δ −Rγ

µ;γ = 0.

Changing δ → α and multiplying by gµβ then shows that

Rαβ
;α =

1

2
R;µg

µβ

as required.

Definition 1.10.2. The Ricci scalar is a full contraction of the Ricci tensor

R = gαβRαβ (1.111)

Because it is a scalar, it is invariant under all frames. Therefore, a neat trick is to always
find the easiest frame to calculate this in.

The Ricci and Riemann tensors can also tell us about whether the space is curved.

• Rµναβ = 0 =⇒ space is not curved and flat everywhere

• Rµν = 0, Rµναβ 6= 0 =⇒ space is not necessarily flat - space can still curve in
the intuitive sense - Ricci-flat

• Both tensors non-zero, definitely not flat in any way
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1.11 Einstein Field Equations
Now we can use the previous section to transform Newton’s equation Eq. (1.1) from the
beginning of the module, into something that is GR-ready. This new theory must satisfy

• Relativity (including in the SR sense)

• Tensorial (holds in all frames and coordinate transforms)

• Accounts for curvature of space-time

• Obeys all the conservation laws derived from the energy-momentum tensor

• Satisfies geodesic equation for free motion

• Satisfies the slow motion limit

Newton’s equations tells us the Laplacian of some potential ∇2φ is responsible for the
gravitational force. The Laplacian measures curvature, and so we expect this to be
replaced with the Ricci tensor. We also know that ∇2φ is a slow motion limit of GR as
in Section 1.9.2 (effectively, a boundary condition). Now, the right-hand side of Newton’s
equation, 4πGρ is a function of mass-density. This will be replaced with energy density,
i.e. a function of T µν . In true physicist fashion, we try some possibilities and then find
the first one which works.

1.11.1 Finding Einstein’s equations
Try

Rαβ = kT αβ, (1.112)

where k ∈ R is a constant. The tensorial ranks on both sides are the same - which is
good. We have satisfied general curvature with the Ricci tensor and ensured the energy
density ρc2 is involved. All is good, except one big elephant.

Problem Whilst Tαβ
;β = 0, we know by Corollary 1.10.1 that

Rαβ
;α =

1

2
R;αg

αβ =
1

2
(∂αR) gαβ 6= 0

So the RHS of Eq. (1.112) is 0 but the LHS is non-zero - that is bad.

Try Our problem was that we had an extra term that was non-zero when we covariantly-
differentiated both sides. So let’s just make a new term, which when covariantly differen-
tiated, cancels out:

Gαβ = Rαβ − 1

2
Rgαβ = kTαβ (1.113)

Indeed, if we apply the covariant derivative to the LHS:

Gαβ
;α = Rαβ

;α − 1

2
R;αg

αβ − 1

2
Rgαβ;α (1.114)

by the product rule. Indeed, the first two terms cancel since R;α = R,α since R is a scalar.
The third term is always 0 since gαβ;α = 0. It also still satisfies some of our requirements,
so this is good - there is one issue though, what is k?
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1.11.2 Finding the constant
We have definitely satisfied conservation laws, SR, curvature, geodesics (because of the
Riemann tensor) and of course, it is a tensorial equation. We require an actual value of k.
The one thing we need to check, is consistency with the slow-motion limit, i.e. Newtonian
gravity.

We contract Eq. (1.113) with gαβ:

gαβR
αβ − 1

2
Rgαβg

αβ = kgαβT
αβ. (1.115)

On the RHS, define T = gαβT
αβ - this is a scalar. On the LHS, we can use Proposition 1.3.2

to get that this is δαα = 4. Hence

R− 2R = kT =⇒ R = −kT

Using Eq. (1.113), we can rewrite everything in terms of Rαβ

Rαβ +
1

2
kTgαβ = kTαβ =⇒ Rαβ = k

(
Tαβ − 1

2
Tgαβ

)
.

In the Newtonian limit, P/c2 � ρ so Tαβ ∼ ρuαuβ. Now to find some terms:

T = gαβTαβ = ρgαβuαuβ = −ρc2 =⇒ T = −ρc2 .

In the weak field limit, gαβ ∼ ηαβ =⇒ g00 = −1 . Since things move slowly, c �
vi=x,y,z =⇒ u0 � ui=1,2,3 =⇒ T 00 = ρc2 .

Evaluating R00:
R00 = Γα

00,α − Γα
α0,0 + Γα

ασΓ
σ
00 − Γα

0σΓ
σ
0α

We approximate the metric in the weak field limit as gαβ ≈ ηαβ + hαβ where |hαβ| � 1.
Additionally, Newtonian gravity is time-independent so Γα

α0,0 = 0. In Section 1.9.2, we
found Γi

00 = c−2φ,i:

R00 =
1

c2
φ,ii =

1

c2
∇2φ

R00 = k

(
T00 −

1

2
Tg00

)
=

k

2
ρc2 = −4πG

c2
ρ

=⇒ k =
8πG

c4

(1.116)

so the full Einstein Field Equations are

Einstein Field Equations

Rµν −
1

2
Rgµν =

8πG

c4
Tµν (1.117)

• 10 coupled, non-linear PDEs - very few analytical solutions and best left for
simulations

• Involves Γα
βγ which are functions of gαβ - 40 components

• Conserves particle number, energy and mass if gαβ is time-independent
• Still a postulate and must be constantly tested against observations
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Chapter 2

Schwarzchild Metric

Actually solving the full set of field equations analytically is pretty hard. It is easier to
solve symmetric problems with good assumptions to make life easier, to make finding ds2

and thus gαβ easier.

2.1 Deriving the Schwarzchild metric
We assume spherically symmetric and pure vacuum conditions. The line element on a
sphere is

ds2 = r2
(
dθ2 + sin2 θdφ2

)
= r2dΩ2

where Ω is the unit of solid angle. Now let (r, t) vary, constrained such that spherical
symmetry still holds

ds2 = α(r, t)dt2 + β(r, t)dtdr + γ(r, t)dr2 + δ(r, t)dΩ2 (2.1)

We look for solutions which are

time-reversible AND time-independent

Metrics with both these properties are called static. In particular
Theorem 2.1.1. Birkhoff’s theorem. Any spherically symmetric solution of Einstein’s
field equations static and asymptotically flat, i.e. far away from a massive body, space-time
looks Minkowski.

A particular corollary of this theorem is
Corollary 2.1.1. The most general metric satisfying Birkhoff’s theorem is

ds2 = −α(r)dt2 + γ(r)dr2 + δ(r)dΩ2 (2.2)

Additionally, our metric must also satisfy Newton’s equations. In lectures, the derivation
is glossed over, but I have put it here for completeness. First, we know δ(r) = r2 because
it must be spherically symmetric. For fixed dt, dr we have ds = rdΩ = rdφ around the
equator, θ = π/2. For the other components, the calculation involves computing many
Christoffel symbols and components of the Ricci tensor - most of which are 0. So, the
non-zero components are presented here.
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Γ0
0r = Γ0

r0 =
1

2
g0β (∂0gβr + ∂rg0β − ∂βg0r)

=
1

2
g00 (∂rg00) ,

=
1

2α
∂rα.

(2.3)

Here are all the non-zero Christoffel symbols (too lazy to type the working out zzz)

Γ0
0r = Γ0

r0 =
α′

2α
, Γr

00 =
α′

2γ
, Γr

rr =
γ′

2γ
, Γr

θθ =
−r

γ
, Γr

φφ =
−r sin2 θ

γ
,

Γθ
rθ = Γθ

θr =
1

r
, Γθ

φφ = − sin θ cos θ, Γφ
rφ = Γφ

φr =
1

r
, Γφ

θφ = Γφ
φθ =

cos θ

sin θ
.

(2.4)

Using these, we can find the non-zero components of the Ricci tensor Eq. (1.107):

R00 =
1

2γ

[
α′′ − 1

2α
(α′)

2 − 1

2γ
α′γ′ +

2

r
α′
]
,

Rrr =
−1

2α

[
α′′ − 1

2α
(α′)

2 − 1

2γ
α′γ′ − 2α

rγ
γ′
]
,

Rθθ = 1− 1

γ
− r

2αγ
α′ +

r

2γ2
γ′,

Rφφ = Rθθ sin
2 θ.

(2.5)

Next, we need to find the Ricci scalar Eq. (1.10.2)

R = gµνRµν = g00R00 + grrRrr + gθθRθθ + gφφRφφ,

=
1

αγ

[
−α′′ +

1

2α
(α′)

2
+

1

2γ
α′γ′ − 2

r
α′ +

2α

rγ
γ′
]
+

2

r2

(
1− 1

γ

)
.

(2.6)

It now time to plug everything into the field equations Eq. (1.117). Since we are looking
in the vacuum region where Tµν = 0. This is convenient - it stops us having to calculate
another tensor, and tensorial equations hold in all reference frames and in every coordinate
inside a frame. Therefore, the 00-component of Eq. (1.117) is

R00 −
1

2
Rg00 =

α

r2
∂r

[
r

(
1− 1

γ

)]
= 0, ⇒ r

(
1− 1

γ

)
= const. ≡ 2m (2.7)

The rr-equation reads

Rrr −
1

2
Rgrr =

1

rα
α′ − γ

r2

(
1− 1

γ

)
= 0

and with the help of the solution for γ reduces to

α′

α
=

2m
r2

1− 2m
r

In particular, the first solution which comes out of both equations is

α = 1− 2m

r
(2.8)
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Remark. You may want to check this is consistent with the θθ, φφ equations - but to be
honest, checking everything and doing the algebra is just long, not worth it. I got to
about 3 pages on my tablet for the θθ equation before calling it quits because it’s so long
and you get nothing out of it.

Now, the final thing we need to check is consistency in the weak field limit, see Sec-
tion 1.9.2. In particular, Eq. (1.97). Hence,

g00 =

(
1− 2m

r

)
= −1− 2

c2
φ (2.9)

We see that m = GM/c2 for consistency with the Newtonian potential φ. We therefore
arrive at the Schwarzchild metric

Schwarzchild metric

ds2 = −c2
(
1− 2GM

rc2

)
dt2 +

(
1− 2GM

rc2

)−1

dr2 + r2dΩ2 (2.10)

where M is the mass of the central body.

2.2 Schwarzchild Radius and Event Horizon
Definition 2.2.1. The Schwarzchild radius Rs is

Rs =
2GM

c2
(2.11)

grr diverges at this value.
Lemma 2.2.1. This type of singularity is a coordinate singularity, namely we should
be able to find some transformation (potentially non-linear) where grr no longer diverges
at Rs

Proof. Proof not covered explicitly in lectures or the problem sheet (so is non-examinable),
but the new set of coordinates are called Eddington-Finkelstein coordinates. You
replace the Schwarzchild time component with a coordinate that parameterises the radial
null geodesics t±(r):

t±(r) = ±(r + 2m log |r − 2m|+ C)

where C is a constant that encodes the initial position r0, so that t±(r0) = 0 and t±(r)
represents the time taken for the light to reach a radial coordinate r from the frame of
reference of an observer at infinity. The + indicates an outgoing particle, whilst − for
ingoing.

However, there is another singularity in Eq. (2.10), namely r = 0. This is the black hole.
Inside r < Rs, ds2 = gttdt

2 + grrdr
2 and the angular components are 0 (a person entering

the black hole, and light, both move along radial geodesics). Weirdly though, the time
and radial components change sign

gtt > 0 grr < 0 (2.12)

but for time-like particles (massive), we have ds2 < 0. Light, of course, remains travelling
along null geodesics. But then the particle is forced forever to have dr < 0, so it is moving
forever inwards to r = 0.
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2.3 Schwarzchild Orbits
From now on, we define

µ :=
GM

c2
=

1

2
Rs

The Lagrangian L = gαβẋ
αẋβ becomes

L = −c2
(
1− 2µ

r

)
ṫ2 +

(
1− 2µ

r

)
ṙ2 + r2

(
θ̇2 + sin2(θ)φ̇2

)
(2.13)

Now, geodesics are found from solving the EL equation along a path parameterised by
λ, and if L is not explicitly a function of some variables, then ∂L/∂ẋα is a constant of
motion. We see above that φ, t do not explicitly appear and so

r2 sin2 θφ̇2 := h

(
1− 2µ

r

)
ṫ = k (2.14)

so h, k are constants and h is the GR analogue of angular momentum.
Remark. Since h has dimensions of length. It is associated to the symmetry under φ →
φ+ const., which in classical mechanics yields conservation of the z-component of angular
momentum.

For k, note in the limit r → ∞, k = ṫ and gαβ = ηαβ, so k = dt/dτ = γ (λ = τ , the
proper time) and total energy is E = γmc2 = kmc2. In general, E = kmc2 and k < 0 is
allowed because of gravity. In Newtonian gravity, potential energy is considered negative
(because it places the object experiencing gravity in a sort of ‘bound state’).

We now want to find equations for θ̇, ṙ. The question is how to do it in a way that avoids
long calculations. Well, if we step back for a moment and consider the θ equation. Then
L = r2

(
θ̇2 + sin2(θ)φ̇2

)
. Suppose we have a perturbation of the form εµ = (0, 0, ε(τ), 0).

We can replace θ → θ + ε in L and get

L = r2

[(
d(θ + ε)

dτ

)2

+ φ̇2 sin2(θ + ε)

]

We can expand the terms, using a Taylor series for the sin2(θ + ε) and ignoring terms
above first order:

L = r2
[
θ̇2 + ε̇2 + 2ε̇θ̇ + φ̇2 (sin θ + ε cos θ)2

]
+ . . .

The metric along such an εµ (ignoring squares of derivatives) is

ds2 =

[
−c2

(
1− 2µ

r

)(
dt

dτ

)2

+
1

1− 2µ
r

(
dr

dτ

)2

+ r2

(
2
dθ

dτ

dε

dτ
+ 2ε sin θ cos θ

(
dφ

dτ

)2
)

+ · · ·

]
dτ 2

(2.15)

=

[
−1 + r2

(
2
dθ

dτ

dε

dτ
+ 2ε sin θ cos θ

(
dφ

dτ

)2
)

+ · · ·

]
dτ 2 (2.16)

and hence the ’distance’ ( c times proper time) along the nearby curve is∫
ds2 =

∫
dτ +

∫
ε

[
d

dτ

(
r2
dθ

dτ

)
− sin θ cos θ

(
dφ

dτ

)2
]
dτ + · · ·
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Setting the first order difference to zero we obtain

d

dτ

(
r2
dθ

dτ

)
− sin θ cos θ

(
dφ

dτ

)2

= 0

which is automatically satisfied if θ = π/2 . Indeed the cosine term will be 0, and as θ is
fixed, all derivatives are 0. By spherical symmetry, this particular solution is enough to
understand all of the geodesics. Another way to think of this is conservation of orbital
angular momentum, where we align the spherical coordinates in the direction of the orbital
angular momentum vector. Since this vector will be perpendicular to the direction of
motion (think of L = r × p in Newtonian physics), we can consider motion in the plane
normal to this vector, which is the equatorial plane.

Now, we have to find the equation for ṙ. We could do the same thing, but luckily we have
the fact that gαβẋαẋβ = −c2 for a massive particle. Combining everything so far, we have
a set of 3 equations (

1− 2µ

r2

)
t = k

r2φ̇ = h

c2
(
1− 2µ

r

)
t2 −

(
1− 2µ

r

)−1

ṙ2 − r2φ̇2 = c2

(2.17)

which when combined produces

ṙ2 +
h2

r2

(
1− 2µ

r

)
− 2µ

c2

r
= c2

(
k2 − 1

)
(2.18)

This is the GR version of kinetic + potential = total energy, for motion along radial
coordinate r. Additionally, compared to Newtonian potential energy, we have a term
∝ r−3. So we have walked through the trenches for this. Hopefully, it means something.

If we divide Eq. (2.18) by 2 and reinsert µ in Eq. (2.3), we can see that there is an
effective potential:

V (r) =
h2

2r2

(
1− 2GM

rc2

)
− GM

r
, (2.19)

so we can rewrite Eq. (2.18) as

ṙ2 + 2V (r) = c2(k2 − 1). (2.20)

2.3.1 Types of orbits
Newton orbits

The effective potential reduces to

V (r) =
h2

2r2
− GM

r
(2.21)

The graph of V against r looks like so

• In Newtonian orbits, there is a centrifugal barrier h2/2r2 which dominates as
r → 0
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Circular

0
Hyperbolic

Elliptical

r

V

Figure 2.1: Different types of orbits in the Newtonian regime.

• Bound orbits are either circular or elliptical (negative V )

• Unbound orbits have positive V

• Elliptical orbits do not precess (at least if the orbit is isolated, i.e. no perturbations
like other planets)

We can (weakly) show the last point by a Taylor expansion of V (r) around r = rc, i.e.
for near-elliptical orbits. Indeed, at rc, the circular orbit radius, all forces are balanced
for every position, so the centrifugal barrier and Newtonian potential are equal. Hence
V ′(rc) = 0. Using this in the Taylor expansion, rc can be found:

V (r) ≈ V (rc) +
1

2
V ′′(rc)(r − rc)

2. (2.22)

Then as the force ∝ −dV/dr, we will get simple harmonic motion in r with ω2
r = |V ′′(rc)| =

GM/r3c . We must find out if this angular frequency really is a precession. Kepler (third
law) showed that the orbital frequency is equal to the exact same expression. Since there
are no additional terms in V to say otherwise, we conclude there is no precession.

General Relativity We now move on to studying GR (Schwarzchild) orbits, which use
the full Eq. (2.19). We look at 3 different regimes, shown in Fig. 2.2.

aphelionperihelion aphelionperihelion

(a) (b)

capture

(c)

capture

Figure 2.2: Effective potential V (r) against r for (a) large h, (b) intermediate h, and (c)
low h. Please do not mind my terrible drawings.

40



• For large h, we see an attractive regime as r → 0, but this is only for small values
of r - otherwise basically Newtonian.

• For intermediate h, we still have bound circular orbits and near-elliptical orbits.
There are also capture orbits, where an objects can be captured and spiral inwards,
rather than be deflected.

• New capture orbits are NOT allowed in Newtonian gravity, since there is a V barrier
at low r.

• For low h, we only have capture orbits.
Remark. Intuitively, this kind of makes sense if you use the description of GR as as a
blanket and a heavy ball creates a ”dip” in the blanket as in Fig. 2.3. You could kind of

Figure 2.3: Spacetime around a black-hole representation.

see that a slowly-moving object is more likely to ‘fall in’ than a fast one.

2.3.2 Unstable circular orbits
For intermediate h, we can explicitly find rc. First, we differentiate V to get

V ′(r) = −h2

r3
+

6h2µ

r4
+

2GM

r2
(2.23)

Since r 6= 0, multiply both sides by r4, move everything to one side and set it equal to 0,
sine we are solving V ′(rc) = 0

0 = 2µc2r2c − h2rc + 3h2µ (2.24)

This is nothing more than the quadratic equation, so we get

rc =
h2 ± h

√
h2 − 12µ2c2

2µc2
(2.25)
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In Fig. 2.2(b), the stationary points the the maximum and minimum. The − root in
Eq. (2.25) corresponds to the unstable maximum. The + root exists if h2 > 12µ2c2, so

rc =
h2

2µc2
= 6µ = 3Rs (2.26)

Inside r = 3Rs, matter drops rapidly into the black hole. Energy released doesn’t have
time to be thermalised, so it doesn’t contribute to accretion radiation.

We can approximate the amount of energy released in accretion. The energy loss from
r = ∞ → 3Rs can be found with E = kmc2. Slow motion in the radial direction allows
using Eq. (2.20) with ṙ ∼ 0 for slow motion:

c2(k2 − 1) = 2V (r) = −1

9
c2 =⇒ k2(rc) = k2

c =
8

9
(2.27)

= ∆E = |kcmc2 −mc2| ∼ 5.7% of rest mass (2.28)

So accretion onto a non-rotating black hole can potentially radiate almost 6% of rest mass
energy. This is almost 10 times more than the 0.6% of energy released from hydrigen to
helium fusion!

2.4 Precession of the perihelion of Mercury
In GR, planets move along time-like geodesics of the space-time metric generated by the
Sun. We can use the Schwarzchild metric to model this, with the solar mass being much
greater than the mass of a planet. We know radial oscillations occur when ω2

r = V ′′(rc).
First, we start from Eq. (2.24) and rearrange for h2 to get

h2 =
µc2r2

r − 3µ
(2.29)

We now find V ′′ explicitly,

V ′′(r) =
3h2

r4
− 12µh2

r5
− 2µc2

r3
, (2.30)

and eliminate h2 by substituting in Eq. (2.29):

V ′′(r) = ω2
r =

3

r4

(
µc2r2

r − 3µ

)
− 12µ

r5

(
µc2r2

r − 3µ

)
− 2µc2

r3
(2.31)

=

[
3r

r − 3µ
− 12µ

r − 3µ
− 2

]
µc2

r3
(2.32)

=
r − 6µ

r − 3µ
× µc2

r3
(2.33)

Remark. Taking the limit ω2
r → 0 recovers r → 3Rs - this is the last circular orbit.

Hence the closest approach to a central mass occurs with a period

Pr =
2π

ωr

(2.34)
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When deriving V (r) originally, we made sure to use proper time τ , so Pr is specifically
the period in proper time of the orbiting planet. During a time Pr, the angle φ
increases by ∆φ = φ̇Pr. In the equatorial plane, sin θ = 1 =⇒ h = φ̇r2. Therefore,

∆φ =
2π

ωr

h

r2
(2.35)

We will substitute Eq. (2.29) for h2 and Eq. (2.33) for ω2
r into Eq. (2.35). This is just

algebra but it is a bit tedious

∆φ = 2π

[
µc2r2

r − 3µ

]1/2
× r−2 ×

[
r − 6µ

r − 3µ
× µc2

r3

]−1/2

(2.36)

Immediately, a lot of things start cancelling out. Pretty much all the constants disappear
except for the 2π, and so do any r− 3µ terms. The r’s multiply to leave us with a single
r and we arrive at

∆φ = 2π

(
r

r − 6µ

)1/2

. (2.37)

Now, if the planet has precessed by 2π, it is back to its starting state. So to really see if
it has precessed, we subtract 2π and we get

∆φ = 2π

[(
r

r − 6µ

)1/2

− 1

]
. (2.38)

The formula provided gives the precession in radians per orbit. Assuming r � µ,
which is it for Mercury around the sun (with eccentricity 0.21, semi-major radius of
5.55× 107 km), we have

δφ ∼ 6πGM

c2r

Now, radians to arcseconds corresponds to multiplying by a factor of 206265 (you don’t
need to remember that for the exam). One orbit lasts 88 Earth days, or about 0.24
years, and a century is about 36500 Earth days. Taking GM/c2 to be about 1.47 km, we
get ∆Φ ∼ 0.103 arcseconds per century. Now, Mercury’s precession is corrected by 43
arcseconds per century!

2.5 Photon orbits and Gravitational lensing
Photons travel on null geodesics since they are massless. The only change From Eq. (2.17)
is that the last equation is 0, i.e.(

1− 2µ

r2

)
t = k

r2φ̇ = h

c2
(
1− 2µ

r

)
t2 −

(
1− 2µ

r

)−1

ṙ2 − r2φ̇2 = 0,

(2.39)

and that this is the only change. The new ODE we get is

ṙ2 +
h2

r2

(
1− 2µ

r

)
= c2k, (2.40)
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Circular
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Hyperbolic

Capture

r

V

Figure 2.4: Different types of photon orbits.

which produces an effective potential

V (r) =
h2

2r2

(
1− 2GM

rc2

)
, (2.41)

so we do not have the Newtonian part like in Eq. (2.19) but keep the GR part. A plot of
this is shown in Fig. 2.4. There are capture orbits, where like in the massive case, photons
are swept around by the curvature of the manifold but do not keep in an orbit. They can
also form circular orbits, but never elliptical orbits. It is either circular or they get
flung out of orbit (hyperbolic).

2.5.1 Gravitational lensing
Orbits with r � µ = GM/c2 have small angle deflections. Using GR, we will calculate
this deflection. We will use the chain rule to eliminate ṙ from Eq. (2.40) as follows:

ṙ =
dr

dτ
=

dr

dφ

dφ

dτ
= φ̇

dr

dφ
=

h

r2
dr

dφ

h2

r4

(
dr

dφ

)2

+
h2

r2
(1− 2µ) = c2k.

(2.42)

We will now make a change of variables to u = 1/r. This is purely algebra. We also
divide by h2 and start from there:

1

r4

(
dr

dφ

)2

+
1

r2
(1− 2µ) =

c2k

h2
(2.43)

u4

(
d(1/u)

dφ

)2

+ u2 − 2µu3 =
c2k

h2
(2.44)

u4

(
du

dφ
×− 1

u2
)2 + u2 − 2µu3 =

c2k

h2
(2.45)(

du

dφ

)2

+ u2 − 2µu3 =
c2k

h2
(2.46)

The trajectory of the light ray can be determined directly from this equation, much as we
did for the precession, but the calculation requires some care. Therefore, and for variety,
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we take a different tack by differentiating to arrive at the second order ODE

d2u

dφ2
+ u− 3µu2 = 0. (2.47)

To solve this equation we adopt a perturbative approach. We assume r � µ and write u
as a power series: u = u(0) + u(1) + . . ., with u2 � u assumed to allow for convergence of
the power series. We can then solve Eq. (2.47) for each power:

zeroth order d2u(0)

dφ2
+ u(0) = 0,

first order d2u(1)

dφ2
+ u(1) = 3µ

(
u(0)
)2

,

. . . · · · = · · ·

(2.48)

At order zero the solution is u(0) = a sinφ and corresponds to the straight line y = 1/a.
The constant of integration a is the reciprocal distance of closest approach of the light
ray to the central mass1. Then, at first order we find

d2u(1)

dφ2
+ u(1) =

3µ

2b2
(1− cos 2φ), =⇒ u(1) =

3µa2

2

(
1 +

1

3
cos 2φ

)

Thus the photon trajectory, incorporating the first order correction coming from general
relativity, is described by

u =
1

r
= a sinφ+

3µa2

2

(
1 +

1

3
cos 2φ

)
+ · · ·

We now determine how this affects the asymptotic directions of the light ray by considering
the limiting values of the angle φ as u → 0 (r → ∞). Retaining only the zeroth order
solution these directions are φ− = 0 and φ+ = π; adding the first order correction (we
assume φ small and expand cos(2φ)) these become

a sinφ+ 2µa2 = 0, ⇒ φ− = −2µa and φ+ = π + 2µa

In particular,

Deflection of light

∆φ ∼ 4µa =
4GM

c2r0
(2.49)

In 1919 Arthur Eddington made observations of the positions of stars close to the sun
during a total solar eclipse and compared these to their known positions from when their
starlight does not pass so close to the sun. The solar radius is approximately 6.96×105 km
and M = 1.48M� so that the prediction for the defection of the starlight is 8.5 × 10−6

radians.
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Figure 2.5: Schematic of how Einstein rings are formulated.

2.5.2 Einstein rings
The idea is shown in Fig. (2.5), where a ‘lens’ a distance d away deflects the light coming
from a source a distance D beyond it and displaced off the direct line of sight by a distance
x. Doing some small angle geometry:

∆ =
4µ

b
' b

d
+

b− x

D
(2.50)

Solving for the observation angle θ ≈ b/d gives

θ =
x

2(D + d)
±

[
4µD

d(D + d)
+

(
x

2(D + d)

)2
]1/2

(2.51)

Why are there two values? The light we see is travelling along a null geodesic and geodesics
are critical points of the distance (or time) function. The path shown in Fig. 2.5 where the
light arrives to us by going above the lens is a critical point; so too is a path that passes
below the lens, which is the other solution. As the lens and source become closer aligned,
that is, x → 0, the 2 light rays (above and below) also get brought closer together. At a
sufficient small x, all paths around the lensing star become critical points and the imaged
star becomes a perfect ring. The apparent opening angle of such an Einstein ring is

θ =

(
4µD

d(D + d)

)1/2

(2.52)

2.6 Schwarzchild black holes
Recall the third equation of Eq. (2.17) when we were first discussing Rs. We now aim to
study how a close and far observer see the black hole. We rearrange the third equation
of Eq. (2.17)

1

c

dr

dτ
= ±

(
κ2 − 1 +

2µ

r

)1/2

, (2.53)

1Astute (or brainrotted?) physicists will recognise 1/a as the impact parameter
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where + is for outfall (away) and − for infall (towards). We suppose the observer falls
from R → r with the position at R assigned the initial time τ = 0. Then

cτ =

∫ R

r

dr(
κ2 − 1 + 2µ

r′

)1/2 , (2.54)

where κ is a constant of motion which is γ2 as r → ∞. This integral is not singular at
r = 2µ, so the observer falls through the event horizon in finite proper time. A
person falling freely inwards, approaching the horizon radially, will pass straight through
it; it is not a singularity of the space-time.

We now do the same for a distant observer. We use the chain rule so that

dr

dτ
=

dr

dt

dt

dτ

1

1− 2µ
r

κ2 − 1(
1− 2µ

r

)3 κ2

c2

(
dr

dt

)2

= 1,

=⇒ κ

c

dr

dt
= −

(
1− 2µ

r

) ∣∣∣∣κ2 − 1 +
2µ

r

∣∣∣∣1/2 ,
(2.55)

Then

cT =

∫ R

r

κdr′

(1− 2µ/r) (κ2 − 1 + 2µ/r′)1/2
(2.56)

for the time that we record it takes for the observer to get to the radial distance r. T now
diverges at r = Rs, so

A distant observer can never see an object hit the event horizon.

It implies that we can never receive any information that such an observer obtains from
the event horizon, or from the region of space-time inside it.

Light travels along null geodesics, we can try to find its trajectory from r → R(
1− 2µ

r

)
c2dt2 =

1

1− 2µ
r

dr2, (2.57)

so that the time we measure for it to reach us is

cT =

∫ R

r

dr′

1− 2µ
r′

= R− r + 2µ ln

∣∣∣∣R− 2µ

r − 2µ

∣∣∣∣ . (2.58)

Notice t → ∞ as r → 2µ, so there is no information from r ≤ Rs, and you are stuck
only being able to obtain information outside of the event horizon.

2.6.1 Gravitational time dilation
In Eq. (2.58), T = tB − tA where

• tA is the coordinate time light leaves r

• tB is the coordinate time light reaches R
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However, the RHS of Eq. (2.58) is not time-dependent, so

Pulses of light from r → R always take the same coordinate time T = ∆t.

So an emitter and observer have the same time between pulses/observations T = ∆t.

Now, we know ds2 = −c2dτ 2 so

c2(∆τ)2 = c2
(
1− 2µ

r

)
dt2

Now for a distant observer (the destination), the time difference in the observer’s frame
is the proper time difference and equals ∆τB = ∆t. Now, we can backtrace to r:

∆τA = (1− 2µ)∆t =

(
1− 2µ

r

)
∆τB < ∆τB (2.59)

The observer at R must conclude time at r < R moves more slowly for them -
we have just shown gravitational time dilation!

2.6.2 Gravitational redshift
This is a problem sheet question and came up in a previous exam paper, although by a
different lecturer. Suppose you are Roy, and you have decided to find your local black
hole and venture towards its event horizon. He will ensure to send back signals to us plebs
back on Earth. However, these signals are coming from a region of strong gravitational
field and are perceived by us, in a much weaker region of the gravitational field, as being
greatly redshifted.

To find the 4-wavevector kµ, we need satisfy some criteria

• kµk
µ = 0

• As r → ∞, the 4-wavevector is the same as SR, that is kµ = (−kt, kx, ky, kz) for
some values kt, kx, ky, kz ∈ R.

• Conserves energy (we require this, and have to be careful since we also have gravi-
tational time dilation).

We will skip over the derivation, though eigenchris’s video goes through it. You may take
me on oath if you wish, but the 4-wavevector (or more specifically, the 1-form) is

kµ =

(
−k∞,

k∞

1− 2µ
r

, 0, 0

)
(2.60)

where k∞ is the wavenumber at r = ∞.

Now, Roy is in his own frame, and we, the observers are at r = rA, we measure his
frequency as:

ωA =
ω∞(

1− 2µ
rA

)1/2 , or ωA

(
1− 2µ

rA

)1/2

= ω∞. (2.61)

If Roy always transmits at a fixed frequency as he perceives it (fixed value of ωA) then
as he gets closer and closer to the event horizon the signal appears in the asymptotic far
field to be redder and redder, eventually being so close that ω∞ → 0.
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2.6.3 Shapiro delay
This is another test of GR based on the time taken to send radar signals to the inner
planets (Venus) and back. this is useful as another test of GR and appears in Problem
Sheet 7 and past papers.

The travel time for the signal depends on whether Venus is at the point closest to ourselves
in its orbit or the point furthest away or somewhere in between. In addition, when it is
furthest away, the signal passes through the strong gravitational field close to the Sun
and is affected by it; this gives an extra contribution to the time taken and is the delay
calculated, and measured, by Shapiro.
Theorem 2.6.1. Shapiro delay. The time taken, T , for a signal to travel between the
point of its closest approach to the Sun, at distance r = b, and a general point at r = R.

cT =
√
R2 − b2 + 2µ

[
ln

R +
√
R2 − b2

b
+

1

2

(
R− b

R + b

)1/2
]
+ · · · . (2.62)

Proof. The proof (with steps) is shown in 2019 Q 2c,d,e. See Section 5.3.1 for this.

2.7 Kruskal-Szekeres Coordinates
The Schwarzchild metric we have used so far have proven to be abundantly useful. How-
ever, the main issue we have encountered is the event horizon, where we cannot obtain any
information beyond it. If you were to draw the worldline of light, we get an asymptote at
r = Rs: As r → ∞ gradient → ±1 and the light cone has a 45◦ opening angle, Fig 2.6.
For r → 2µ = Rs, the gradient of the worldline → ±∞. World Lines at Rs ± δ meet at
∞ as δ → 0. The line at r = Rs is actually a point at r = Rs; t = ∞. This is clearly not
a good coordinate system to study black holes.

The Kruskal-Szekeres (KS) coordinates aim to solve this. They are defined as
Definition 2.7.1. KS-coordinate transform on the Schwarzchild metric.

r > 2µ : u = α cosh β v = α sinh β (2.63)
r < 2µ : u = α sinh β v = α cosh β (2.64)

where Kruskal’s choice of α, β were

α =

∣∣∣∣1− r

2µ

∣∣∣∣1/2 β =
ct

4
4µ. (2.65)

The metric now becomes

ds2 = −32
µ3

r
e−

r
2µ
(
dv2 − du2

)
+ r2dΩ2. (2.66)

Here, r is still the Schwarzchild r coordinate, but is no longer independent since r =
r(u, v).

From this metric, we can derive some interesting properties

1. From cosh2 x− sinh2 x = 1, (
r

2µ
− 1

)
e

r
2µ = u2 − v2

The RHS is a hyperbola, so for fixed r, (u, v) curves are hyperbolae.
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worldlinect

Rs r
Figure 2.6: Wordline (blue) of light near a black hole and its event horizon. The red cones
are light cones positioned at different values of r.

2. Light infall for dθ = dφ = 0, along null geodesics ds = 0. Then dv = ±du, i.e. the
opening angle of light cones is constant.

3. Lines of constant t are straight lines radially out from u = v = 0

We can draw out the result of this and it is shown in Fig. 2.7.

There are a few points to go through:

• The KS diagram is symmetric.

• Region 1 is the universe outside r = Rs.

• Region 2 is the universe inside r = Rs. It is a null surface; even light emitted
from within region II cannot escape it and necessarily arrives as we discovered in
Section 2.6.

• Region III is a time-reversed copy of our universe. It contains a singularity at
u2 − v2 = −1 with t < 0.
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Figure 2.7: (left) Drawing of Kruskal-Szekeres coordinates, and (right) Penrose diagram.
Null directions are preserved to allow correct causal structure. Two time-like trajectories
are indicated on the RHS, showing the event horizon can be passed through. Diagram
modified from Dr. Gareth Alexander’s previous lecture notes.

• Region IV is a white hole. Any light signal emitted from within region IV will
cross the event horizon and leave it.

2.8 Kerr black hole
The Kerr metric is a generalisation for an axisymmetric rotating black hole, that was
done on top of a generalisation to the KS metric to account for charged black holes
(Reissner-Nordström BH). Without derivation, the metric is

ds2 = −c2
(
∆− a2 sin2 θ

ρ2

)
dt2 − 2ac

2µr sin2 θ

ρ2
dtdφ+

(r2 + a2)− a2∆sin2 θ

ρ2
sin2 θdφ2

+
ρ2

∆
dr2 + ρ2dθ2

(2.67)
where

• ∆ = r2 − 2µr + a2

• ρ2 = r2 + a2 cos2 θ

• a = J/µ where J is the total angular momentum.

The coordinates are similar to Schwarzchild but

• t is a frame in which everything is stationary.

• r is not defined from the circumference of a circle as there is no r2dΩ2 term in
Eq. (2.67).

Then ds2 is
ds2 = gttc

2dt2 + 2gtφdtdφ+ gφφdφ
2 + grrdr

2 + gθθdθ
2 (2.68)

Remark. Eq. (2.67) is still a metric because it is symmetric. Since we have a term dtdφ,
this means gtφ = gφt so we end up double counting in ds2.
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2.8.1 Ergosphere
Just like in the Schwarzchild case, there is a surface where grr → ∞ which happens when

∆ = r2 − 2µr + a2 = 0

Whether there is a real solution or not depends on the magnitude of a. Indeed, for |a| < µ,
there are 2 real solutions:

r± = µ±
(
µ2 − a2

)1/2 (2.69)

• The positive solution r+ is the event horizon of the black hole; massive, or mass-
less, particles can cross it falling inwards, but can then never cross the same surface
again to get back out.

• the negative solution r− is the Cauchy horizon. It is called that because after
this point, we cannot determine the worldlines from initial values (named after the
mathematician).

However, if |a| > µ, we have no real roots and therefore no horizon. Hence, there is no
horizon ‘hiding’ the singularity - we call this a naked singularity.
Theorem 2.8.1. Cosmic censorship conjecture (not really a true theorem, sorry mathe-
maticians). There are no naked singularities. Hence |a| ≤ µ.

Unlike in the Schwarzchild case, gtt vanishes on a different surface in the Kerr metric,
whilst in the former, gtt and grr did their shenanigans on the same surface.

We suppose a photon is emitted tangent to the θ = π/2 plane, the equatorial plane as
before. Photons travel on null geodesics, so ds2 = 0. Since the photon travels around the
equator, we know dt, dφ are non-zero and keep those terms:

ds2 = 0 = gttdt
2 + 2gtφdtdφ+ gφφdφ

2. (2.70)

We can treat Eq. (2.70) as a quadratic equation in dφ and use the quadratic formula in
this sense to get

dφ

dt
= − gtφ

gφφ
±

((
gtφ
gφφ

)2

− gtt
gφφ

)1/2

(2.71)

If gtt = 0, we get 2 solutions for dφ/dt:

dφ

dt
= −2

gtφ
gφφ

OR dφ

dt
= 0

This gives the key result

• Photons launched in the direction of motion move in that direction - this is
frame dragging.

• Photons launched in the opposite direction of motion are stationary.

Definition 2.8.1. The region enclosed by the grr = ∞ and gtt = 0 surfaces is the
ergosphere. A typical ergosphere is shown in Fig. 2.8.

We can also look at the Penrose diagram for this (non-examinable).

• On passing inward through the inner horizon, the infaller sees the infinite past of
the Universe reflected in the gravitationally repulsive singularity;
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BH ergosphereergosphere

Figure 2.8: Diagram of the ergosphere of a Kerr black hole.

• On passing back outward through the inner horizon, the infaller sees the infinite
future of the Universe;

• On passing outward through the outer horizon of the white hole, the infaller sees
the infinite past of the New Universe.

• It is possible to pass through the disk bounded by the ring singularity of the rotating
black hole to an antiverse.
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Figure 2.9: Penrose diagram for Kerr black hole.

54



Chapter 3

Cosmology

3.1 Modelling the universe

Observations about the universe:

• On scales > 10Mpc the universe is homogeneous

• Universe is isotropic [1 pc = 3× 1016 m; Galaxies about 15kpc; galactic clusters
are about a Mpc away.

• Most distant galaxies ≥ 10 GPc away.

• Fluctuations in the Cosmic Microwave Background (CMB) about 1 in 105.

• Galaxies receeding at a speed v = Hd.

• Average density 10−26 kg m = ρ

Expect GR to be needed when R ∼ GM
c2

R =
GM

c2
=

G

c2
4

3
πR3ρ =⇒ R ∼ 6 Gpc

So the large structure of the universe requires GR to be described. To do so, we must
establish a good coordinate system.
Definition 3.1.1. Cosmic time is the time coordinate for the same synchronous time
everywhere. It is the local proper time and must be stationary w.r.t CMB.

In general, the metric satisfies ds2 = −c2dt2 + dl2 where dl2 is the space component. For
a fixed position in time, we have dl2 = 0 so ds2 = −c2fτ 2 = −c2dt2 =⇒ dt = dτ .

The space component dl2 satisfies constant curvature everywhere. This type of uni-
verse is called a de-Sitter universe, denoted dS4 and is an exact solution to Einstein’s
equations. It is defined as the subset of R1,4 (that is, the space of vectors (x0, x1, x2, x3))
satisfying

−(x0)2 + (x1)2 + (x2)2 + (x3)2 = −a20

where a0 ∈ R is a space-like distance from some origin.
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3.2 Friedmann-Lemaître-Robertson-Walker Metric
de-Sitter universes are isotropic and homogeneous, matching observations. Therefore, the
general metric takes the form

ds2 = −c2dt2 + a2(t)dl2 (3.1)

where dl2 is the metric for an isotropic, homogeneous, three-dimensional Riemannian
manifold1 and a : R → R is a continuous function of cosmic time. The most typical
surfaces of constant curvature are n-spheres. A 2-sphere obeys the equation

x2 + y2 + z2 = R2,

where (x, y, z) ∈ R3 and x, y, z, R ∈ R. So a 2-sphere is a 2D surface embedded in a
three-dimensional space (at least, that is our visualisation, remember that if you’re on a
manifold, you do not have an embedding space). We can generalise this to a 3-sphere.
Define ρ2 = x2 + y2 + z2, and introduce a new space dimension ω. Then

ρ2 + ω2 = a2 ∈ R (3.2)

Respecting the d on both sides, we have ρdρ = −ωdω. Thus dl2 becomes

dl2 =
dρ2

(1− ρ2/a2)
+ ρ2dΩ2 (3.3)

The radial coordinate r will then be defined as ρ = ar and we get

Friedmann-Lemaître-Robertson-Walker (FLRW) Metric

ds2 = −c2dt2 + a2(t)dl2 = −c2dt2 + a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
, (3.4)

where k = 0,−1,+1 corresponding to the cases

dl2 =


dχ2 + sin2 χ

(
dθ2 + sin2 θdφ2

)
k = +1, r = sinχ

dχ2 + χ2
(
dθ2 + sin2 θdφ2

)
k = 0

dχ2 + sinh2 χ
(
dθ2 + sin2 θdφ2

)
k = −1, r = sinhχ

(3.5)

and thus FLRW space-time is expressed in the coordinates (t, χ, θ, φ).
• k = +1, metric of a 3-sphere with positive curvature 1/a2,
• k = 0, zero scalar curvature - flat spacetime
• k = −1, negative scalar curvature - open space (also called hyperbolic space).

Here, χ is sometimes referred to as the conformal distance or cosmic radius.

3.2.1 Hubble’s law
The FLRW metric treats the universe as a fluid which is homogeneous and isotropic. This
cosmic fluid is at rest in the co-moving (t, χ, θ, φ) coordinate system , where t is the proper
time. At any choice of t at any spatial point, the distribution of matter/energy/speeds
look the same.

1This is because we expect metrics in pure space to still be something like dx2 + dy2 + dz2, which is
Riemannian. The entire manifold (space and time) in a de-Sitter universe is still pseudo-Riemannian.
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As a result, some galaxies in the FLRW metric are stationary, so the distance is the proper
distance dp

dp =

∫ χ

0

a(t)dχ′ = a(t)χ (3.6)

Proper distance is therefore measured with dt = 0 and ds = adχ, because we assume that
light from the galaxy is travelling along a radial null geodesic. Now, χ is fixed, so

v =
d

dt
(aχ) =

da

dt
χ = ȧχ, (3.7)

However χ = dp/a so
v = H(t)dp =

ȧ

a
dp (3.8)

This is Hubble’s law. If t = t0 which is today, then H(t0) = H0 - Hubble’s ‘constant’,
which changes with time.

3.2.2 Redshift
Now consider a galaxy also at χ, which emits photons at time te and te+δte. The observer,
let’s say Oscar, observes these pulses at to and to + δto. As usual, light travels along null
geodesics ds2 = 0 so

cdt = a(t)dχ (3.9)

χ =

∫ to

te

c

a(t)
dt =

∫ to+δto

te+δte

c

a(t)
dt (3.10)

Now, since a(t) is continuous, it is integrable. We assume te < te + δte < to < to + δto and
we can subtract the integral

∫ to
te+δte

c/a(t)dt from both sides and rearrange:∫ to

te

c

a(t)
dt−

∫ to

te+δte

c

a(t)
dt =

∫ to+δto

te+δte

c

a(t)
dt−

∫ to

te+δte

c

a(t)
dt (3.11)

=⇒
∫ te+δte

te

c

a(t)
dt =

∫ to+δto

to

c

a(t)
dt (3.12)

=

∫ δto

δte

c

a(t)
dt (3.13)

=⇒ δte
a(te)

=
δto
a(to)

(3.14)

We can rearrange this expression such that

δto
δte

=
a(to)

a(te)
(3.15)

Now, the angular frequency of the light is defined as ω ∝ 1/λ, hence Eq. (3.15) is also the
same as
Definition 3.2.1. The redshift z2 is defined as

ωe

ωo
=

a(to)

a(te)
:= 1 + z (3.16)

It is the factor by which the universe expands between emission and observation.
2The derivation is not strictly correct because the light travel distance of the emitted photons are

the same.
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Note that redshift and Hubble’s law come from the same idea - consider a fixed galaxy and
a light signal. Thus, we can actually derive Hubble’s law from this redshift consideration.

If the galaxies are close to each other, so Oscar’s times are temit = tobs − δt with δt small,
then we may approximate

a (tobs)

a (temit)
≈ a (tobs)

a (tobs)− ∂ta (tobs) · δt
≈ 1 +

ȧ

a

∣∣∣∣
tobs

δt ≈ 1 +H (tobs)
a (tobs)χ0

c

where H(tobs) = H(to) = H(t0) is today’s value of Hubble’s constant. For small redshifts,
the interpretation as a Doppler shift due to the apparent recession velocity gives z = v/c
and we obtain Hubble’s law

v = H(t0)dp,

as before in Eq. (3.8). We can thus interpret 1 + z as the cosmological redshift showing
how much local gravity (or galaxy speeds) in (χ, θ, φ) will contribute to a closed universe.

3.3 Solving the field equations
The FLRW metric gives gαβ in (t, χ, θ, φ) space. We can therefore find Γα

γβ, Rαβ and R.
You can do it yourself because I also cannot be asked to type this out and we get

R00 −
1

2
Rg00 =

3

c2

[(
ȧ

a

)2

+
kc2

a2

]
,

Rij −
1

2
Rgij =

−1

c2

[
2ä

a
+

(
ȧ

a

)2

+
kc2

a2

]
gij, i, j = 1, 2, 3

(3.17)

Now we have the LHS sorted, we need the RHS - that is Tαβ using Eq. (1.58) in a cosmic
time, comoving frame. Since we are co-moving, the 4-velocity components v1 = v2 = v3 =
0 and gttv

tvt = −c2. With gtt = −1, vt = c

T00 =
(
ρ+

p

c2

)
c2 − P = ρc2

Tij = Pgij, i, j = 1, 2, 3
(3.18)

Substituting everything into the field equations, we get 4 equations collectively called the
Friedmann equations

Friedmann equations

The 00-component is called the Friedmann equation(
ȧ

a

)2

+
kc2

a2
=

8πG

3
ρ (3.19)

The last 3 equations make up the acceleration equation

2
ä

a
= −8πG

3c2
(
ρc2 + 3P

)
(3.20)

The RHS of the acceleration equation is negative, so the universe cannot be static.
Observations show that ȧ > 0, i.e. the universe is expanding, but since ä < 0, the universe
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must have been smaller in the past. We can therefore perform a cheap extrapolation of
time

1

H
=

a

ȧ

∣∣∣
now

∼ 14 billion years (3.21)

The Friedmann equations suggest a → 0, and back in time, the universe must have been
vanishingly smal - the idea of a ‘priemevial atom’ from Lemaître and the ‘Big Bang’ from
Hoyle.

3.3.1 Cosmological constant Λ

We saw that with the Friedmann equations, the universe was not static. Einstein did not
like this and modified his equations to mathc his belief that the universe was static, by
way of the cosmological constant Λ:

Rαβ − 1

2
Rgαβ + Λgαβ = kT αβ. (3.22)

It is common to rearrange the Λ term to the RHS and rewrite it as

Rαβ − 1

2
Rgαβ = k

(
Tαβ − ∆

k
gαβ
)
, (3.23)

i.e., this term acts as some new fluid satisfying the energy-momentum tensor as(
ρλ +

Pλ

c2

)
vαvβ + Pλg

αβ, (3.24)

which is satisfied if
ρΛ =

Λc2

8πG
PΛ = −Λ

k
= − Λc4

8πG
. (3.25)

This is a fluid of constant density and negative pressure, called ‘dark energy’ and
acts to make the universe expand.

Predictions based off observations suggest that

• Dark energy is about 68% of T µν

• Dark matter (matter we cannot see) is about 27% of T µν

A static universe is possible if Λ 6= 0 but it’s unstable.
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Chapter 4

Gravitational waves

4.1 Linear GR
Small disturbances to vacuum spacetime (Minkowski) come in the form of a small per-
turbation hαβ where |hαβ| � 1. Indeed,

gµν = ηµν + hµν(x
α) (4.1)

We substitute this metric into the field equations and evaluate all terms, scalars and
Christoffel symbols

Γγ
αβ =

1

2
gνα (gνα,β + gνβ,α − gαβ,ν)

' 1

2
ηνα (hνα,β + hνβα − hαβ,ν) .

(4.2)

The Ricci tensor can be approximated to first order also:

Rµν =∂αΓ
α
µν − ∂µΓ

α
αν + Γβ

µνΓ
α
αβ − Γβ

µαΓ
α
βν

=
1

2
ηαβ (∂α∂µhβν + ∂α∂νhµβ − ∂α∂βhµν)

− 1

2
ηαβ (∂µ∂αhβν + ∂µ∂νhαβ − ∂µ∂βhαν) +O(h2)

=
1

2
ηαβ (−∂α∂βhµν + ∂µ∂βhαν + ∂α∂νhµβ − ∂µ∂νhαβ) +O(h2)

(4.3)

Rµν
∼= Γα

µν,α − Γα
αν;µ +O

(
h2
)

(4.4)
It depends on second derivatives of the perturbation hµν reflecting the fact that curvature
is associated to second derivatives. It also means that constant and linear terms in hµν

carry no physical significance; they can be removed by coordinate transformations.

In vacuum, Rµν are the field equations.

−�hµν + ∂µVν + ∂νVµ = 0

� = ηµν
∂

∂xµ

∂

∂xν
= − 1

c2
∂2

∂t2
+∇2

vν = hα
ν,α − 1

2
h,ν ,

(4.5)

where h = hα
α
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4.2 Gravitational Waves (GWs)
We can always make a coordinate transformation xα → xα+ εα for |εα| small. Now, since
Rµν = 0 is a tensor equation, it is valid under all coordinates.

Equations involving hµν are not valid tensor equations because of the dependence on εα.
To see how this affects us, we first make a change of variables
Definition 4.2.1. The trace-reversed perturbation h̄µν is defined as

h̄µν = hµν −
1

2
ηµνh (4.6)

We choose εα such that
∂ν h̄

µν = 0

�h̄µν = 0
(4.7)

where of course,
h̄µν = ηµαηνβh̄αβ,

i.e., h̄µν satisfies the wave equation in Minkowski space.

The goal of this section is to find an expression for h̄µν and what it could physically
correspond to - i.e. sources of gravitational waves. The following derivation is non-
examinable and is taken from Dr. Gareth’s Alexander’s notes with modification.
Theorem 4.2.1.

h̄ij = −2G

c4r

∂2

∂t2
Iij, (4.8)

where Iij is the moment of inertia defined as

Iij =

∫
ρxixjdV, (4.9)

where

• dV is volume of compact source

• r is the distance from source to observer

• ρ is the mass density of the source at the retarded time tr = t− r/c

Proof. Eq. (4.7) is an inhomogeneous (tensor) wave equation with the stress-energy-
momentum tensor playing the role of the source. Minkowski space has R4 translational
symmetry which allows a Fourier transform to be done (both sides are also integrable
since they are continuous functions)

h̄µν(t,x) =
−16πG

c4

∫
ei(k·x−ωt)

(2π)4
T̃µν

(ω/c)2 − k2
dωd3k

=
−16πG

c4

∫
Gret (x− x′, t− t′)Tµν (x

′, t′) dt′d3x′
(4.10)

where T̃µν is the Fourier transform of the stress-energy-momentum tensor, k = |k|, Gret(x, t)
is the retarded Green function for the wave operator, and we have made use of the con-
volution theorem. The appearance of the retarded Green function comes from physical
considerations of the relevant boundary conditions; the matter content is a source for the
gravitational radiation and a compact source should produce outgoing waves rather than
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ingoing waves. The gravitational disturbance produced by a compact source can therefore
be given as

h̄µν =
−16πG

c4

∫
−1

4π |x− x′|
δ ((t− t′)− |x− x′| /c)Tµν (x

′, t′) dt′d3x′

=
16πG

c4

∫
Tµν (x

′, t− |x− x′| /c)
4π |x− x′|

d3x′.

(4.11)

The disturbance has to come from somewhere, and we attribute this to so-called grav-
itational waves. These are transverse waves1 and therefore associated with the spatial
components of the perturbed metric h̄ij where i, j = 1, 2, 3. Focusing on these compo-
nents and looking at far-field solutions |x| � |x′|:

h̄ij =
4G

c4|x|

∫
source

Tij (x
′, t− |x|/c) d3x′. (4.12)

As described in Section 1.6, the energy-momentum tensor obeys a continuity equation
∂µTµν = 0. We will use this to show the source of GWs is characteristic of a mass
quadrupole. You have seen quadrupoles before in physics:

• electric quadrupole field (4 electric charges in a square)

• quadrupole magnetic field (2 spaced coils with current in the same direction)

We can therefore integrate Tij, abusing symmetry Tµν = Tνµ:∫
Tijd

3x =
−1

2c

∂

∂t

∫ [
xjTi0 + xiTj0

]
d3x

=
−1

2c

∂

∂t

∫ [
xj
(
∂kx

i
)
T0k + xi

(
∂kx

j
)
T0k

]
d3x

=
1

2c

∂

∂t

∫
xixj∂kT0kd

3x

=
1

2c2
∂2

∂t2

∫
xixjT00d

3x

(4.13)

But what is T00? It is nothing more than ρc2! Moreover, the integral is pretty much the
expression for the moment of inertia. We arrive at the desired formula.

h̄ij(x, t) =
2G

c6|x|
∂2

∂t2

∫
source

x′ix′jT00 (x
′, t− |x|/c) d3x′ (4.14)

To convert the notation, simply recast d3x′ → dV , |x| → r and replace T00 with ρc2

(remembering to evaluate at the retarded time) and we are done.

From this equation for h̄ij, we note a couple things

• Waves travel at c

• No time components at all in Lorenz gauge - only space perturbations

• Traceless and transverse coordinates for h̄ij

1Physical solutions of the field equations end up producing transverse solutions.
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4.3 Properties of gravitational waves
We suppose we have propagation of hµν in the z direction

hµν(z, t) =


0 0 0 0
0 a11 a12 0
0 a12 −a11 0
0 0 0 0

 exp [iωt− iωz/c] (4.15)

This perturbation tells us some remarkable properties

• No time-dependence other than in the waveform exp [iωt− iωz/c]

• Only 2 polarisations: a11, a12

• Transverse waves propagate at c.

time

(a) (b) (c)

Figure 4.1: Identical test masses in a ring with (a) no GW, (b) +-polarisation, and (c) ×
polarisation.

Consider a circle of identical test masses as in Fig. 4.1. The 2 polarisations are called the
+ polarisation and × polarisation. In the + polarisation, the ring oscillates compression
and expansion along x, y as shown in Fig. 4.1(b). The metric for this is given by

ds2 = ηµνdx
µdxν + h cos(ω(t− z/c))

(
dx2 − dy2

)
(4.16)

In the × polarisation, these ellipses are oriented diagonally as in Fig. 4.1(c). To mathe-
matically describe these GWs, we can consider rotating the + polarisation by some angle
φ. Therefore, ds2 is similar but

dx2 − dy2 → cos 2φ
[
dx2 − dy2

]
+ 2 sin 2φdxdy

so the final metric is

ds2 = ηµνdx
µdxν + h cos(ω(t− z/c))

(
cos 2φ

[
dx2 − dy2

]
+ 2 sin 2φdxdy

)
(4.17)
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4.4 Generating GWs

Since h̄µνdepends on Iij, generating noticeable GWs requires systems with a large moment
of inertia. Individual spinning stars, or other objects that are axisymmetric, are therefore
not good sources. However, binary star systems are pretty good. Consider 2 identical
stars each of mass M , initially placed a distance a away, rotating with frequency Ω about
the centre-of-mass. The axis line is oriented parallel to x and the system is placed in the
x− y plane.

The mass density is then

ρ = Mδ (x− x1) +Mδ (x− x2) (4.18)

when the y-coordinates are 0. The x positions of the masses obey

x1 =
a

2
cos(Ωt) x2 = −a

2
cosΩt (4.19)

By evaluating the h̄ii components, the amplitude (prefactor) can be found. We first
calculate Ixx:

Ixx =

∫
x2p(x, t)dx = 2M

(a
2
cosΩt

)2
=

1

4
Ma2(1 + cos(2Ωt)) (4.20)

so
hxx =

−2GMΩ2a2

c4r
cos(2Ωt).

Namely, GWs have a frequency double the source.

Using Kepler’s third law, Ω2a3 = 2GM

2GMΩ2a2

c4r
=

(2GM/c2)
2

ar
=

(2µ)2

ar
=

R2
s

ar
(4.21)

The amplitude is tiny; it is the product of the Schwarzschild radii for the two stars divided
by their separation and the distance they are from the point of observation. Not only is
the Schwarzschild radius small on astronomical scales, but the distance to the source is
truly astronomical. This makes GWs very hard to detect.

4.5 Detecting GWs
Due to the binary star system, the metric is perturbed as

ds2 = (gµν + hµν)dx
µdxν (4.22)

The ttypical distance will be measured as

ds =

(
1 +

1

2
h

)
L, (4.23)

where L is the unperturbed length. Because of Minkowski space, the fractional change is
the measured proper length.
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Figure 4.2: Michelson interferometer sketch from Prof. Tony Arber’s lectures.

4.5.1 LIGO and VIRGO detectors
These are long-arm (LIGO about 4 km, VIRGO about 3 km) Michelson interferometers,
a schematic is shown in Fig. 4.2. We have a laser system (a laser pointer is not enough)
which is incident on a beam splitter, producing a 50/50 split down 2 paths which are of
identical lengths. The light then bounces back and forth say 100+ times and then they
recombine.

The paths are configured such that once the light rays return to the detector, if there
is no GWs then they completely destructively interfere - i.e. you detect nothing.
Then, if there is a perturbation, the lengths light travels is different between the paths
and a the recombination no longer completely destructively interferes.

1. Hypothetically you could replace this setup with a cavity interferometer (Fabry-
Perot, optical cavity), but that’s just not feasible because how well do you think
multiple-kilometre mirrors are gonna be?

2. The existence of polarisation states: suppose you have the +-polarisation which are
oriented vertically and horizontally. This means there is contraction in one axis and
expansion in another, since the paths are perpendicular, this will be detected.

There are 2 LIGO detectors across the US, allowing you to correlate the signal. This is
necessary, because these detectors will be sensitive to anything that vibrates, including
earthquakes, construction, even the air hitting the mirrors. Hence the 2 LIGO detectors
are also oriented differently to analyse any polarisations and remove noise etc. Triangu-
lation (i.e., locating the source of the GW) is done with the VIRGO detector in Italy.

The detectors are sensitive to frequencies (LIGO) between 400 to 10,000 Hz. For lower
frequency, this is typical sound waves. However, seismic activity, lightning etc. distort
the accuracy of low-frequency vibrations.

LIGO is sensitive to GWs down to h ∼ 10−21, so a change in arm lengths of about
10−18 metres.

Using Kepler’s third law, Ω2a3 = 2GM , to increase the amplitude of the signal, we need
smaller a (separation). For a binary system, this small separation typically occurs in the
inspiral stage, when the 2 stars are spiralling towards each other and about to collide.
This corresponds to the final 10-20 seconds!

Some examples of what we can detect:
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Figure 4.3: Typical chirp signal sketch. Screenshot from Prof. Tony Arber’s lectures.

• 20-30 solar mass Kerr black hole mergers. r ∼ 400 Mpc - extra-galactic source

• 1-2 solar mass neutron stars at about d ∼ 30 Mpc - extra-galactic

• a decreases due to a loss of energy to GWs. This leads to an increase of h and Ω
and the chirp signal is calculated numerically

4.5.2 Chirp mass
A typical chirp signal looks like Fig. 4.3 for a rotating binary system. You should be able
to recall this type of graph for the exam.

Using Kepler’s law, you can determine the mass of the binary system. Relaxing our
assumption of identical stars in the binary, we label them with masses m1,m2

Ω2 =
(m1 +m2)c

2

a3
(4.24)

Differentiate both sides w.r.t time

2ΩΩ̇ = −3 (m1 +m2) c
2

a4
ȧ,

=
192c3m1m2 (m1 +m2)

2

5a7
,

=
192

5
c−5/3 m1m2

(m1 +m2)
1/3

Ω14/3.

(4.25)

This can rearranged into an expression for the so-called chirp mass, the effective mass
of a binary system:

M =

(
m3

1m
3
2

m1 +m2

)1/5

= c

(
5

96

)3/5

Ω−11/5Ω̇3/5 (4.26)

where the first equality is derived from a so-called ‘post-Newtonian expansion’ and is
non-examinable.
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Chapter 5

Exam questions

Some answers to past exam questions. Words highlighted in bold are keywords that you
may want to look for during the exam.

5.1 Geodesics

5.1.1 2019 Q2a

Example 1.
Describe briefly the significance of geodesics in GR and contrast this with the sit-
uation in Newton’s theory of gravity. No calculations are required [6].

Proof. We have to do 2 make sure we do two things in our answer. For ever y point we
make about geodesics, we must compare with Newton to get the marks.

• Motion of free massive particles is along time-like geodesics of space-time

• Light travels along null geodesics

• This behaviour is seen in planetary orbital motion, gravitational lensing, Shapiro
delay, redshift

• Newton’s theory: all massive objects experience a gravitational force from all other
massive objects

• Free particles, experiencing no force, travel along geodesics - in flat Euclidean space,
these are just straight lines

• Light also travels along straight line geodesics in Newton, and do not experience
any relativistic effects.
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5.2 The Field Equations

5.2.1 2019 Q1c

Example 2.
The source of gravity is the stress-energy-momentum tensor, so that the full Einstein
equations take the form

Rµv −
1

2
Rgµv = κTµv

The constant κ can be determined from consideration of the Newtonian limit,
which you should do as follows: (i) Use the geodesic equation, d2xα

dτ2
+Γα

µν
dxµ

dτ
dxv

dτ
=

0, where τ = c× proper time, to show that

Γi
00 '

1

c2
∂iφ,

in the Newtonian limit, where φ is the Newtonian potential. {3}
(ii) Using the previous result and the general formula given in the rubric, show that

R00 '
1

c2
∂i∂iφ

(iii) Show that R = −κT , where T = gµνTµν .
(iv) Finally, taking Tµν to be dominated by the energy density, i.e. T00 ' ρc2 and
all other components negligible, determine the value of κ.

This is considered bookwork since this was explicitly covered in lectures or the problem
sheet.

Proof. (i) We consider µ = ν = 0. Indeed then, ẋ0 = γc = γ because in the Newtonian
limit, objects move slowly so c � v [1]. Notice then we get

1

c2
d2xα

dτ 2
= Γα

00 (5.1)

LHS is a factor proportional to acceleration. Newton tells us that this must be propor-
tional to the gradient of a potential −∇φ = −∂iφ and so we get the desired relationship
[2].

(ii) This is direct application of Eq. (1.107). In the weak field limit, second deriva-
tives (product of Christoffel symbols) can be neglected and Newtonian gravity is time-
independent. Considering R00 we get

R00 ' ∂iΓ
i
00 '

1

c2
∂i∂iφ (5.2)

(iii) Contract with the fully-contravariant metric tensor gµν on both sides. The question
hints you on this by telling you what the scalar T is defined as.

gµvRµv −
1

2
Rgµvgµv = κgµvTµv (5.3)

Recall a property of product of metric tensors, Eq. (1.3.2) which simplifies the product
to be 4. Rearrange to get R by itself and we are done.
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(iv) We need only consider the 00-component as in lectures. This is identical to Sec-
tion 1.11.2.

5.2.2 2019 Q1d

Example 3.
In the space-time region external to the Sun, the stress-energy-momentum tensor
is zero and the metric satisfies the vacuum Einstein equations. Show that this
means the space-time geometry external to the Sun satisfies Rµν = 0, i.e. the Ricci
curvature vanishes identically. Comment on whether or not the space-time is curved
[4].

Proof. External to the Sun, energy tensor is 0. Hence, we again contract with the con-
travariant metric tensor

0 = gµvRµv −
1

2
Rgµvgµv = R− 1

2
R(4) = −R, (5.4)

So the Ricci scalar vanishes. However the Ricci scalar is a sum of metric components and
Ricci tensor. Indeed even for empty, flat space, the metric is non-zero so the Ricci tensor
must vanish everywhere.

Recall that

• Rµναβ = 0 =⇒ space is not curved and flat everywhere

• Rµν = 0, Rµναβ 6= 0 =⇒ space is not necessarily flat - space can still curve in
the intuitive sense - Ricci-flat

• Both tensors non-zero, definitely not flat in any way

So space time us curved (for extra brownie points, you might note the planets travel on
time-like geodesics of the metric but they aren’t geodesics in flat Minkowksi space).
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5.3 Time dilation

5.3.1 2019 Q2c-e

Example 4.
Derivation of the Shapiro delay
c) Consider a radar (light) signal passing close to a massive gravitational body,
described by the Schwarzschild metric with the trajectory of the signal lying in
the equatorial plane (θ = π/2). Along the trajectory, the azimuthal coordinate is
related to the time coordinate by

r2dφ =
`

γ

(
1− 2µ

r

)
cdt

where ` and γ are the two conserved first integrals of the motion. Show that the
trajectory of the radar signal satisfies

−
(
1− 2µ

r

)[
1− (`/γ)2

r2

(
1− 2µ

r

)]
c2dt2 +

1

1− 2µ
r

dr2 = 0.

d) Use the distance of closest approach, r = b, to determine `/γ and conse-
quently show that

cdt =
1

1− 2µ
r

[
1− b2

r2

(
1− 2µ

r

)(
1− 2µ

b

)]−1/2

dr.

e) Working to first order in µ, show that the travel time for the radar signal
between the distance of closest approach, r = b, and a position r = R is given by

c× travel time =
√
R2 − b2 + 2µ

{
ln

[
R

b
+

√
R2

b2
− 1

]
+

1

2

√
R− b

R + b

}
.

What interpretation can be given to the two terms in this expression? {7}
[You may quote the standard integrals

∫
dx√
x2−1

= ln
(
x+

√
x2 − 1

)
and∫

dx
(x+1)

√
x2−1

=
√

x−1
x+1

.
]

This question is more about algebra and maths than any actual physics, especially the
big 7 marker, where you will not get many marks if you don’t spot how to rearrange it.

Proof. (c) Radar is light, and it travels along null geodesics ds2 = 0, so using the full
Schwarzchild metric gives

ds2 = −
(
1− 2µ

r

)
c2dt2 +

1

1− 2µ
r

dr2 + r2dφ2 = 0. (5.5)

for which you can eliminate dφ2 directly.

(d) Closest approach means dr = 0. Rearranging the result of (c) with r = b gives

(`/γ)2 = b2
(
1− 2µ

r

)−1

(5.6)
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Now you substitute this back into (c) and square root both sides.

(e) The painful part. We first have to manipulate the square root part.

1− b2

r2

(
1− 2µ

r

)(
1− 2µ

b

) = 1− b2

r2
− b2

r2

(
2µ
b
− 2µ

r

)(
1− 2µ

b

) ,
=

(
1− b2

r2

)[
1− 2µb

r2
1

1− b2

r2

(
1− b

r

)(
1− 2µ

b

)] ,
=

(
1− b2

r2

)[
1− 2µ

r

1
r
b
+ 1

1

1− 2µ
b

]
.

(5.7)

where to go from the first to second line, we add and subtract a 1, then factor out
(1− b2/r2), and from the second to the third line, multiply put the second term in suare
brackets and simplify.

Now, the LHS is cdt, so integrating gives ct, where t is the travel time. Then the RHS is
integrated between [b, R]:

ct =

∫ R

r=b

(
1− b2

r2

)−1/2{
1 +

2µ

r
+

1

2

2µ

r

1
r
b
+ 1

}
dr,

=

∫ R

r=b

r√
r2 − b2

dr + 2µ

∫ R

r=b

{
1√

r2 − b2
+

1

2

1
r
b
+ 1

1√
r2 − b2

}
dr,

=
√
R2 − b2 + 2µ

{
ln

(
R

b
+

√
R2

b2
− 1

)
+

1

2

√
R− b

R + b

}
,

(5.8)

To get the curly brackets in the first line, expand the 1/(1− 2µ/b) in the square brackets
to first order. To get from the first line to the second line, expand the brackets in to
square root form and distribute. then the third line uses the standard integrals.

73



5.4 FLRW

5.4.1 2019 Q4e

Example 5.
e) Consider a light signal travelling through a FLRW space-time that was emitted
from a nearby galaxy at χ = χemit at a time t = temit and is observed at our own
galaxy at χ = 0 at the present time t = tnow . The signal may be assumed to travel
along a ’radial’ line with θ and φ fixed.
(i) Show that

χemit =

∫ tnow

temit

cdt

a(t)

(ii) Considering this as a relation between the observation time, tnow , and the
emission time, i.e. tnow = tnow (temit ), show that

dtnow
dtemit

=
a (tnow)

a (temit)
≈ 1 +

ȧ

a

∣∣∣∣
tnow

(tnow − temit)

(iii) If the nearby galaxy from which the signal is emitted is considered to be receding
from us with line-of-sight velocity v, the frequency of the emitted light, ωemit , will
be Doppler shifted relative to that which we observe, ωnow , so that

ωemit = ωnow

(
1 +

v

c

)
Show that this together with the previous result implies that the recession velocity
obeys Hubble’s law, v = Hnow d, where d is the (current) distance to the nearby
galaxy.

Proof. (i) Integrate along radial null geodesic, so dθ = dφ = 0 in FLRW metric, so

ds2 = 0 = −c2dt2 + a2(t)dχ2 ⇐⇒ c

a(t)
dt = dχ (5.9)

Integrate the RHs between χ ∈ [0, χemit] and the LHS between [temit, tnow] and we get the
desired integral.

(ii) We differentiate under the integral sign, the expression in (i). This is done by the
Leibniz formula

∂

∂z

∫ b(z)

a(z)

f(x, z)dx =

∫ b(z)

a(z)

∂f

∂z
dx+ f(b(z), z)

∂b

∂z
− f(a(z), z)

∂a

∂z
(5.10)

where in our case, z = temit, b(z) = b(temit) = tnow(temit), a(z) = a(temit) = temit. Differen-
tiating then, we get

0 =
c

a (tnow )

dtnow

dtemit
− c

a (temit )
, =⇒ dtnow

dtemit
=

a (tnow )

a (temit )
. (5.11)

Expanding a(temit) about the current time as a first order Taylor series:

dtnow

dtemit
≈ a (tnow)

a (tnow)− ȧ|tnow
(tnow − temit)

≈ 1 +
ȧ

a

∣∣∣∣
tnow

(tnow − temit) . (5.12)
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(iii) Conceptually, the Doppler shift relates the ratio of time intervals to a frequency shift.
Noting then the numerator and denominator of dtnow/dtemit are themselves time intervals,
they are each inversely proportional to angular frequency

dtnow

dtemit
=

ωemit

ωnow
≈ 1 +

v

c
. (5.13)

Now, (ii) contains an expression for the derivative in terms of a, ȧ. We equate both sides
ad assume (tnow − temit) = d/c. Then the recession velocitiy and thus Hubble’s law is

v =
ȧ

a

∣∣∣∣
tnow

d = Hnow d (5.14)

5.5 Gravitational waves

5.5.1 2019 Q3a, 2024 Q3a

Example 6.
Summarise the LIGO experiment and its successful detection of gravitational waves.
Your answer should cover: the nature of the experiment; the nature of the signal
detected; some details of the inferred source(s) [8].

Proof. It’s enough to state these bullet points

• LIGO experiment consists of two long-arm Michelson interferometers placed
on opposite sides of the US.

• They are sensitive to strains around 10−21 m and the arms are multi-kilometres
long to try to detect this

• Sensitive to frequencies between 400 and 10,000 Hz

• Signals correlated between the two LIGO detectors to remove noise.

• Triangulation of the GW done with the VIRGO detector in Italy, to try to
find the source of the GW

• Detected signal is a chirp - amplitude and frequency increase as bodies approach
to merge. Then after merging, a sudden decrease

• Source nature is inferred by numerically solving the field equations

• Successfully inferred sources of GWs can be 2 Kerr black holes or a binary neutron
star system.
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