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0.1 Introduction, Credits and Notation

0.1.1 Credits

A big thank you to

• Chris, for producing the majority of the original content and equations in Chapters 1 - 8

• Chung, for adding in Two-level systems and elaborating/reorganising content on Chris’s
content and tidying up the document.

0.1.2 How to use the guide

Anything in a white box with a blue title frame like

Title here

Content placed in these contains information or principles that must be remembered
for the exams. This applies information placed in the same colour box, but without a
title!

Any equation which contains a regular, black box like this is important information but you
shouldn’t need to memorise it.

This guide is very detailed, almost like its own set of lecture notes. It aims to answer as many
questions as possible regarding both the maths and the physics in this module. Any parts non-
examinable will be explicitly marked non-examinable. Beware that this can change over the
years if this guide isn’t updated and therefore check with the lecturer.

0.1.3 Tips

Past exams have generally been quite formulaic.

• It is almost guaranteed to be asked a perturbation theory question - you should ensure
you memorise the algorithms rather than examples.

• Be familiar with formal quantum mechanics from second year. Stuff like quantum numbers,
the spherical harmonics, raising and lowering operators are all assumed knowledge.

• There is a hefty set of problems alongside the past exams, so do all of them!

Another popular question is integration. We outline some general integral tricks here. Most
importantly, don’t memorise any integrals or integral results. They will always be given
in the exam, and so if you find you don’t use a standard integral, you may have an incorrect
answer! This is true for anything perturbation theory related.

• The integral of an odd function f(x), i.e. it satisfies f(−x) = −f(x) over a symmetric
interval, i.e. an interval of the form [−L,L] or (−∞,∞) is always 0. This applies to
multiple integrals as well.
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Chapter 1

Time-independent Non-Degenerate
PT

1.1 Introduction
The vast majority of systems we consider in quantum mechanics don’t have exact solutions and
so need to be approximated. In fact there are only 2 known systems which have been solved
exactly. These are the simple harmonic oscillator (SHO) and the potential well in 3D. However
if the system we want to find the eigenvalues and eigenstates for is similar to one of these, then
we can use perturbation theory (PT) as a way to approximate these eigenvalues and eigenstates.
This involves taking a system which has been solved exactly and applying a small correction to
make it resemble the system we wish to solve, and then consider perturbative expansions of the
values that change.

1.2 Derivation
Generally speaking, there are only formulas and an algorithm that is needed to be remembered.
The derivations following are, based on history, non-examinable.

We wish to find the corrections to our energy eigenvalues and corresponding eigenstates as a
result of the perturbation we have applied. We begin by writing the Hamiltonian for our new
perturbed system as:

Ĥ = Ĥ0 + βV̂ , (1.1)

where Ĥ0 is the Hamiltonian of our unperturbed solved system (like the SHO), V̂ is the pertur-
bation we apply and β is just a real number that controls the size of V̂ . Here we assume that Ĥ0

and V̂ are both hermitian, so that Ĥ is also hermitian. We further assume that the eigenvalues
of the unperturbed system are not degenerate, i.e there aren’t any eigenstates with the same
eigenvalue or an eigenstate with multiple eigenvalues. Therefore each unique eigenvalue has 1
eigenfunction. Note β is constrained by 0 ≤ β < 1 otherwise the expansions will not converge.

The unperturbed system solves its own Schrödinger equation:

Ĥ0 |ψn〉 = En |ψn〉 (1.2)

We then consider our perturbed Hamiltonian eigenvalue equation:

Ĥ |ψn〉 = En |ψn〉 , (1.3)

3



where |ψn〉 is the eigenstate of the perturbed state in the nth energy level, and En is the energy
of the nth energy level and Ĥ is given by Eq. (1.1).

The idea with PT is that since our system is the sum of the unperturbed system plus a ‘little
change‘ βV̂ , we are able to say that our perturbed energy is the sum of the original energies
plus some ‘little change’. If we want to be more accurate, we keep adding more ‘little changes’.
The perturbative expansions of En and |ψn〉 are:

En = E0
n + βE1

n + β2E2
n + β3E3

n..., (1.4)

|ψn〉 = |φ0n〉+ β |φ1n〉+ β2 |φ2n〉+ β3 |φ3n〉 ..., (1.5)

where |φ0n〉 and E0
n are the eigenstates and eigenvalues of the nth energy level of the unperturbed

system, Ĥ0.

The extra terms E1
n, E

2
n denote the correction energies to the unperturbed energy E0

n to the nth
energy level. The notation is read as

Ei
n is the ith order correction to the unperturbed nth energy level.

The same concept is applied to the eigenstates, that is

|φin〉 is the ith order wavefunction correction to the unperturbed nth wavefunction.

Since β < 1, the series in both energy and state converge. It might help to think of the
perturbative expansions, Eq (1.4) and Eq (1.5), as Taylor series expansions (in terms of β) of
the eigenvalues and eigenstates about the unperturbed eigenvalue and eigenstate.

Let us focus on the wavefunction expansion. The state |ψn〉 is written as the linear, infinite sum
of other wavefunctions |φin〉. Namely, we can think of all of the |φin〉 as a Hilbert space, since
the infinite sum converges (completeness) and we can still take inner products of wavefunctions
with each other.

Now, a Hilbert space is a type of vector space. Can we form a basis of a vector space? Yes!
Some linear algebra gladly tells us any vector space has a basis, and so our Hilbert space does
have a basis of wavefunctions. What does this actually mean? This means we can, without
question, say assume the |φin〉 are orthonormal.

Remark. Some of you might wonder why can we assume them to be orthonormal? Well, suppose
none of the |φin〉 are orthonormal to each other. Since every vector space has a basis, we can
write each |φin〉 as a linear superposition of some basis wavefunctions, call them say |ξin〉. Then
every term in the perturbative expansion can be written as

|φn〉 =
∑
i

γi |ξin〉 (1.6)

so assuming we automatically have an orthonormal basis makes life easier.

For the following we assume that unperturbed eigenstates are orthonormal to one another and
that corrections to the nth unperturbed eigenstate are orthonormal to the unperturbed eigen-
state, i.e:

〈φ0n|φ0m〉 = δnm (1.7)

〈φ0n|φ1n〉 = 〈φ0n|φ2n〉 = 〈φ0n|φ3n〉 = ... = 0. (1.8)

Now combining Eq. (1.1) - Eq.(1.5), we find:
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Ĥ |ψn〉 = (Ĥ0 + βV̂ )(|φ0n〉+ β |φ1n〉+ β2 |φ2n〉+ . . .) (1.9)
= (E0

n + βE1
n + β2E2

n + ...)(|φ0n〉+ β |φ1n〉+ β2 |φ2n〉+ ...), (1.10)

We then expand this and equate powers of β on the left and right hand side. So for zero order
terms, i.e the terms which don’t contain β, we find:

Ĥ0 |φ0n〉 = E0
n |φ0n〉 , (1.11)

as we would expect, the unperturbed Hamiltonian operating on an unperturbed eigenstate
returns that same eigenstate with the corresponding unperturbed eigenvalue. We now examine
the series expansions up to different orders.

First order expansion :

Ĥ0 |φ1n〉+ V̂ |φ0n〉 = E0
n |φ1n〉+ E1

n |φ0n〉 , (1.12)

Proof. This is not clear to see but you must expand the brackets up to the and including the β
terms. Thus we need to expand

(E0
n + βE1

n)(|φ0n〉+ β |φ1n〉) (1.13)
= E0

n |φ0n〉+ E0
nβ |φ1n〉+ βE1

n |φ0n〉+ β2E1
n |φ1n〉 (1.14)

Now, the first term E0
n |φ0n〉 = Ĥ0 |φ0n〉, the unperturbed wavefunction. We ignore any second

order terms, so discard any β2 and above terms. Now we are left with a term linear in β that
is our first order perturbation.

Note if we assume a sufficiently small perturbation V̂ then we can just drop the βs, i.e. we just
absorb it into the perturbation V̂ . Furthermore, the corrections |φin〉 for i > 0 are generally
not eigenstates of Ĥ0, but are rather linear combinations of other eigenstates themselves. This
means if you were to act Ĥ0 on those eigenstates you would get a factor of E0

n out.

Second order expansion:

Ĥ0 |φ2n〉+ V̂ |φ1n〉 = E0
n |φ2n〉+ E1

n |φ1n〉+ E2
n |φ0n〉 . (1.15)

We restrict ourselves to a first order perturbation for now. By pre-multiplying Eq. (1.12) by
〈φ0n|:

E0
n 〈φ0n|φ1n〉+ 〈φ0n|V̂ |φ0n〉 = E0

n 〈φ0n|φ1n〉+ E1
n 〈φ0n|φ0n〉 , (1.16)

where we can remove the E0
n and E1

n terms from within the bra-ket notation as they are just
scalars.

This then simplifies to give us:

First order energy correction

E1
n = 〈φ0n|V̂ |φ0n〉 (1.17)
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thanks to the orthonormality condition, Eq. (1.7), we impose. This means that the first order
correction to the nth energy eigenvalue is given by the expectation value of the nth energy level
unperturbed eigenstates with the perturbation we have applied.

Now in order to find the first order corrections to the eigenstates, we assume it takes the form:

|φ1n〉 =
∑
p,p 6=n

anp |φ0p〉 (1.18)

i.e it is a linear combination of all the unperturbed eigenstates of the system, other than the one
we are trying to find the correction for, |φ0n〉. Then pre-multiplying Eq. (1.12) by 〈φ0m|, where
m 6= n, using Eq. (1.18), Eq. (1.7) and Eq. (1.8) we find:

First order correction to the wavefunction

|φ1n〉 = −
∑
p,p 6=n

〈φ0p| V̂ |φ0n〉
E0

p − E0
n

|φ0p〉 (1.19)

Following a similar process for the second order energy correction, we find:

Second order energy correction

E2
n = −

∑
p,p 6=n

| 〈φ0p| V̂ |φ0n〉 |2

E0
p − E0

n

(1.20)

Note how the numerator, | 〈φ0p| V̂ |φ0n〉 |2, is always positive. So if we further assume that E0
p > E0

n

then its always true that E2
n < 0.

1.3 The TINDPT Algorithm
Figure out your favourite way of saying the acronym.

The Algorithm

Memorise this algorithm for the exam. It will apply to every non-degenerate PT question,
ever. Please note if your system has particular properties - e.g. for a helium atom, there
are 2 electrons - you must take into account the spin wavefunctions - you will need to
ensure you include those in your calculations.

1. Determine what your perturbation V̂ is. This is given in the question, so read it.
2. Find your unperturbed wavefunctions. Wavefunctions will always be given some-

where in the exam. However you may need to remember the formulae for energies
of simple systems like the SHO or hydrogenic atom.

3. IdenItify what calculations you need and beware of the wording of the question. If
it asks for the corrections you may calculate E1

n, E2
n directly. If it asks you for the

final energy don’t forget to add E0
n to your corrections! Take note of whether it

says to first or second order.
4. Calculate! Remember how to find expectation values with an integral. All necessary

standard integrals will be given in the exam rubric.
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Chapter 2

Time-independent Degenerate PT

2.1 Introduction
In the previous section we applied a perturbation to a known system and found the first and
second order corrections to energy eigenvalues and the first order correction to eigenstates. How-
ever we assumed that there was no degeneracy involved. If our system we are considering does
have degenerate energy levels, i.e distinct eigenstates with the same eigenvalue then problems
arise. By considering Eq. (1.19) and Eq. (1.17) we can see that if there are degenerate energy
levels, where E0

p = E0
n, then these expressions diverge. Thankfully we can alter the process to

account for this degeneracy and still find values for our system.

2.2 Derivation
As with the non-degenerate case, this derivation is not examinable so feel free to skip it.

Consider E0
n, an eigenvalue of the unperturbed Hamiltonian Ĥ0. Suppose it is s-fold degenerate,

so there are s linearly independent eigenstates which have energy E0
n. We shall label these as

|u0nα〉 (so α indexes the degenerate states) and assume that they are orthornormal to each other1:

〈u0nα|u0nβ〉 = δαβ, (2.1)

where α, β = 1, 2, 3, . . . s are labels for the s degenerate eigenstates of the nth energy level.

Since any linear combination of |u0nα〉 is an eigenstate of Ĥ0, then the unperturbed states we
used previously in non-degenerate PT are not uniquely defined and so can’t be used for PT.
Therefore we need to find the correct normalised states which can be used in PT. Note there
will be s of these states. We write these states in the following form:

|φ0ni〉 =
s∑

α=1

ciα |u0nα〉 , (2.2)

where the ciα ensures we have the correct linear combination of unperturbed degenerate states
to use in PT, and i = 1, 2, 3, . . . , s.

1This is again due to linear algebra, by the same reasoning presented in the previous chapter, though sub-
tly different. If you took any linear algebra modules, these eigenfunctions span the eigenspace created by the
degeneracy of En

0 . Since they span and are linearly independent, they form a basis. We can always create an
orthonormal basis because we work in a Hilbert space, so we are free to assume they can be orthonormal.
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From Eq. (1.19) and Eq. (1.17), we can see the denominator tends to 0 as the system tends
towards degeneracy. In order to ensure we have valid perturbative expansions, like Eq. (1.5)
and Eq. (1.4), we make the numerator tend to 0 as well. This is ensured by the condition:

〈φ0ni|V̂ |φ0nj〉 = 〈φ0ni|V̂ |φ0ni〉 δij (2.3)

which can be represented as an s×s diagonal matrix2 which ensures our perturbation expansions
are valid. This means that we can now follow the same process as for the non-degenerate case,
which results in a slightly modified Eq. (1.17):

First order energy correction to the ith degenerate eigenfunction

E1
ni = 〈φ0ni|V̂ |φ0ni〉 . (2.4)

Analogous to Eq. (1.17), the first order correction for the ith degenerate state of the nth energy
level is given by the expectation value of the ith degenerate eigenstate with the perturbation.

However you wouldn’t normally use Eq. (2.4), since it doesn’t tell you the correct linear combi-
nation of |u0nα〉 which allows PT to work. There is an easier way to find the first order corrections
for each of the degenerate eigenstates as well as the coefficients, ciα. We are going to go in for
a hefty derivation, but it is non-examinable so you may skip straight to Eq. (2.10).

We begin with Eq. (1.12) but instead replace the subscripts n→ ni so we have

Ĥ0 |φ1ni〉+ V̂ |φ0ni〉 = E0
n |φ1ni〉+ E1

ni |φ0ni〉 , (2.5)

We rearrange into a dodgy-looking form

−
(
V̂ − E1

ni

)
|φ0ni〉 =

(
Ĥ0 − E0

n

)
(2.6)

Pre-multiply it by 〈u0nβ| and we get

−
〈
u0nβ

∣∣∣ V̂ − E1
ni

∣∣∣φ0ni〉 =
〈
u0nβ

∣∣∣ Ĥ0 − E0
n

∣∣∣φ1ni〉 (2.7)

However note that from first-order expansion Ĥ0 |φ1ni〉 = E0
n |φ1ni〉 so the RHS is just zero.

Therefore we rearrange and get〈
u0nβ

∣∣∣ V̂ ∣∣∣φ0ni〉 = E1
ni

〈
u0nβ

∣∣φ0ni〉 (2.8)

We now substitute in our linear combination Eq. (2.2) - we want to find the coefficients ciα. We
extract the sums to the outside because these operations are all linear (it’s called linear algebra
for a reason!)

s∑
α=1

ciα

〈
u0nβ

∣∣∣ V̂ ∣∣∣u0nα〉 =

s∑
α=1

E1
niciα

〈
u0nβ

∣∣u0nα〉 = Eniδαβ (2.9)

by the orthonormality condition. Rearranging all to one side gives:

s∑
α=1

(
〈u0nβ|V̂ |u0nα〉 − E1

niδαβ

)
ciα = 0∀i = 1, . . . , s (2.10)

This is most nicely represented by a matrix equation, where
∑s

α=1 〈u0nβ|V̂ |u0nα〉 is the matrix,
the elements of which are determined by the expectation value of the degenerate eigenstates

2This is covered more in two-level systems, but it again comes from the idea that states can be represented
as vectors, so operators can be represented as matrices.
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with the perturbation. The term −E1
niδαβ can be seen as the form −λI where I is the identity

matrix. Therefore, we can think of our system of s equations as solving for the eigenvectors of
the matrix given by 〈u0nβ|V̂ |u0nα〉. Therefore we are solving the secular determinant

Secular determinant for degenerate PT

det
(
〈u0nβ|V̂ |u0nα〉 − E1

niδαβ

)
= 0 (2.11)

So in order to find the first order corrections to the degenerate energy levels and their corre-
sponding wave functions you simply solve Eq. (2.10) like any other eigenvalue equation.

Eigenvalues are the energy corrections

The eigenvalues of the matrix determine the first order corrections, E1
ni, which are then

re-inserted back into the equation to find ciα.

This then means you can determine |φni〉 for each E1
ni, using Eq. (2.2).

Don’t worry if none of this is making any sense it will hopefully make a lot more sense once you
see an example and there aren’t tons of greek letters and summation symbols all over the place.

2.3 Example: 2D SHO
In 1D the SHO is not a degenerate system, it has unique eigenstates for each of the energy levels
given by En = (n+ 1

2)~ω. However when we consider a 2D SHO, we are allowing oscillations in
two directions, so the unperturbed Hamiltonian is just the sum of the 1D Hamiltonian in two
directions:

Ĥ0 =
p2x
2m

+
p2y
2m

+
1

2
mω2(x2 + y2), (2.12)

where px, py are the momentum in the x and y directions respectively, and x, y the canonical
coordinates. The unperturbed energy of this 2D system will now have contributions from the
springs in both the x and y directions:

E0
N = N~ω = (nx + ny + 1)~ω =

[(
nx +

1

2
) + (ny +

1

2

)]
~ω, (2.13)

with eigenstates given by:

u0N (x, y) = u0nx
(x)u0ny

(y), (2.14)

where u0nx
(x) are just the eigenstates for the 1D system. You again do not need to memorise

the wavefunctions.

Now when N = 1, we can see there is no degeneracy present as in this case the only possibility
is nx = ny = 0. So for E0

1 the only possible eigenstate is u00(x, y) = u00(x)u
0
0(y). However if

we consider the first excited state N = 2, there is a 2-fold degeneracy, so s = 2. If N = 2,
then there are 2 sets of possible values of nx, ny. These are nx = 0 and ny = 1, or nx = 1 and
ny = 0. We can check this quickly: E0

2 = (nx + ny + 1) ~ω. Subtracting ~ω from either side
gives ~ω = (nx + ny)~ω. The only (integer) solutions that are valid are if one of nx, ny is 1 and
the other is 0.

Remark. If it helps, write out a table or equation explicitly and count.
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In the first set the spring in the x direction isn’t oscillating it only has its zero point energy,
whilst in the y direction the spring is oscillating in its first excited state.

This means our degenerate eigenstates, using Eq. (2.14), are given by:

u021(x, y) = u01(x)u
0
0(y) (2.15)

u022(x, y) = u00(x)u
0
1(y), (2.16)

where the first equation corresponds to nx = 1, ny = 0 and the second corresponds to nx = 0,
ny = 1. These equations correspond to our |u0nα〉, defined by Eq. (2.1), where N ≡ n = 2 as we
are in the first excited state of the system, and since there are 2 degenerate eigenstates α = 1, 2.
Now using Eq. (2.2), we define the correct linear combination of degenerate eigenstates that
allows us to perform PT:

|φ021〉 = c11 |u021〉+ c12 |u022〉 (2.17)
|φ022〉 = c21 |u021〉+ c22 |u022〉 , (2.18)

these are our |φ0ni〉 and ciα.

Now in order to find the first order corrections and correct linear combination, we need to solve
Eq. (2.10). The matrix will be a 2 × 2 matrix since this a 2-fold degeneracy. The elements of
the matrix are determined as:

V11 = 〈u021|V̂ |u021〉 (2.19)
V12 = 〈u021|V̂ |u022〉 (2.20)
V21 = 〈u022|V̂ |u021〉 (2.21)
V22 = 〈u022|V̂ |u022〉 , (2.22)

where Vij is the matrix element of the ith row and the jth column. So the perturbation matrix
looks like:

V̂
.
=

(
V11 V12
V21 V22

)
(2.23)

Now assuming a perturbation of V̂ = λmω2xy, and standard forms for the unperturbed eigen-
states of the 1D SHO, we find by evaluating the matrix elements, that Eq. (2.23) is given by:

V̂
.
=

(
0 λ~ω

2
λ~ω
2 0

)
(2.24)

Remark. Remember to evaluate the matrix elements using the integral definition, i.e.

〈u02α|V̂ |u02β〉 =
∫
u∗2αV̂ u

0
2βdr (2.25)

where dr indicates to integrate over all degrees of freedom (e.g. x and y for the 2D SHO).

See the introduction for some extra tips on the integrals - in the exam they will save you time.
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The first order corrections to the first excited energy level are then found from the eigenvalues
of the above matrix to be E1

2 = ±λ~ω
2 . Then our coefficients in Eq. (2.28) and Eq. (2.29) are

determined from:

(
0 λ~ω

2
λ~ω
2 0

)(
c11
c12

)
= +

λ~ω
2

(
c11
c12

)
(2.26)

for Eq. (2.28), and:

(
0 λ~ω

2
λ~ω
2 0

)(
c21
c22

)
= −λ~ω

2

(
c21
c22

)
(2.27)

for Eq. (2.29). Now we need to find the ciα. For the eigenvalue +λ~ω/2, we get c11 = c12 = 1/
√
2.

For the eigenvalue λ = −λ~ω/2, c21 = 1√
2

and c22 = − 1√
2
. Therefore the correct normalised

eigenfunctions for perturbation theory are

|φ021〉 =
1√
2
|u021〉+

1√
2
|u022〉 (2.28)

|φ022〉 =
1√
2
|u021〉 −

1√
2
|u022〉 , (2.29)

2.4 Key Results and The TIDPT Algorithm
Degenerate PT allows us to find approximate values for the energy eigenvalues and eigenstates
of a degenerate system which resembles a system we can solve exactly. If you get asked to find
the first order energy corrections for a degenerate system and/or the correct eigenstates that
allow PT to work, then the process to follow is:

The Algorithm

1. Check what the degeneracy of the system is (s).
2. Find the forms of the s degenerate eigenstates, Eq. (2.1).
3. Form s linear combinations from the s degenerate eigenstates, Eq. (2.2).
4. Form the s×s perturbation matrix using the perturbation given and the degenerate

eigenstates. Since the matrix is symmetric you won’t have to calculate all the off
diagonal elements individually, Eq. (2.10).

5. Calculate the eigenvalues of the matrix, these give you the first order energy cor-
rections of the degenerate energy level you’re considering. Note there will be s of
them, but some may be repeated.

6. Then form an eigenvalue equation, with the perturbation matrix, the linear com-
binations of degenerate eigenstates and the eigenvalues to find the correct linear
combinations.
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Chapter 3

Variational Method

3.1 Introduction
The variational, or Rayleigh-Ritz, method is another approximation method we can use. We
use this when dealing with a system where only the form of the Hamiltonian is known exactly.
It involves making a prediction of what the ground state wave function of the system would look
like and using this to calculate an upper bound for the energy of the ground state. This method
can be applied to excited states as well, however it is slightly more complicated and you don’t
need to worry about this.

3.2 Derivation
From the third postulate of quantum mechanics, we know that any state of a particular system,
|ψ〉, can be expressed as a linear combination of the eigenstates of an operator, such as the
Hamiltonian, so long as they form a complete set:

|ψ〉 =
∑
n

cn |φn〉 , (3.1)

where |φn〉 are the eigenstates of Ĥ and the sum is over the complete set of these eigenstates.
Then considering the expectation value of Ĥ:

Expectation of the Hamiltonian

〈Ĥ〉 = I =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

=

∫
ψ∗
T ĤψTd

3r∫
ψ∗
TψTd3r

(3.2)

If |ψ〉 is normalised the denominator is automatically one, so always check before starting
the calculation. Assuming normalised wavefunctions, inserting Eq. (3.1) into Eq. (3.2), we
find:

〈Ĥ〉 =
∑
n

|cn|2En. (3.3)

This means if we take |ψ〉 to be our trial wave function that we guess, which and we will
denote as |ψT 〉, then 〈Ĥ〉 ≥ E1 which is the ground state of the system.

This is because we assume that the energy eigenvalues, En, of |φn〉 are ordered such that E1 <
E2 < E3 < E4. So unless we accidentally pick the exact ground eigenstate of the Hamiltonian
then our trial wave function will be a combination of excited eigenstates of the Hamiltonian, as

13



we predict from Eq. (3.1). So our expectation value of the Hamiltonian will contain the sum of
the corresponding energy eigenvalues for these eigenstates. For example if we let our trial wave
function take the form:

|ψT 〉 = c1 |φ1〉+ c5 |φ5〉+ c23 |φ22〉 , (3.4)

where c1, c5, c23 6= 0. Then Eq. (3.3) predicts:

〈Ĥ〉 = |c1|2E1 + |c5|2E5 + |c23|2E23, (3.5)

which must be larger than E1. However if we say that:

|ψT 〉 = c1 |φ1〉 = |φ1〉 , (3.6)

where c1 = 1 as |ψT 〉 must be normalised. Then from Eq. (3.3):

〈Ĥ〉 = |c1|2E1 = E1. (3.7)

We choose a form for |ψT 〉 which is a function of some parameters, αi, that we can tune, i.e
ψT = ψT (α1, α2, α3, . . .). We then calculate the expectation value of the Hamiltonian with |ψT 〉
using Eq. (3.2). The expectation value is then minimised with respect to α1, α2, α3, . . . with the
final result representing the best estimate of the ground state energy of the system using |ψT 〉
and an upper bound for the actual ground state energy of the system.

3.3 Key Results and the Algorithm
The variational method allows us to find an upper bound for the ground state energy of some
system that we know the exact Hamiltonian for, but cannot solve exactly, by guessing a wave
function. The general process for the variational method to always follow is:

The Algorithm

1. Guess the form of a trial wave function, |ψT 〉, which depends on some parameters
we can tune, so ψT = ψT (α1, α2, . . .).

2. Ensure that |ψT 〉 is normalised.
3. Calculate 〈Ĥ〉 = I = E(α1, . . .) using the trial wave function.
4. Minimise 〈Ĥ〉 with respect to any variational parameters, i.e. solve for when

∂E(α1, . . .)

∂αi
= 0∀i.

5. Calculate the minimum value of 〈Ĥ〉 using previously found value for variational
parameter.

In an exam you will never have to guess a wave function yourself, it will always be given to you
and there will always only be one parameter to minimise 〈Ĥ〉 with respect to.

Note if we have 2 trial wave functions, and one of them gives a lower value for 〈Ĥ〉 than
the other, then this trial wave function gives a better estimate for the actual ground state
energy of the system.
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Chapter 4

SOC and the Zeeman effect

4.1 Introduction

This entire section is effectively a massive example of how useful degenerate PT is. Here we
apply it to a hydrogenic system to quantify the magnitude of energy splittings when we apply
an external magnetic field, allow spin-orbit coupling (SOC) or have a combination of both. This
is done both using the brute force method, described in Section 2, and by figuring out what the
correct eigenstates for PT are using symmetry.

4.2 Derivation

The Zeeman effect involves an external magnetic field coupling to the magnetic moments of
an electron and SOC involves the coupling between these magnetic moments. In general the
magnetic moment of a particle due to orbital motion is:

µL = gL
q

2m
L (4.1)

where gL is the orbital gyromagnetic ration, q is the charge of the particle, m the mass and L the
orbital angular momentum vector. However all particles also have intrinisc angular momentum
(spin), which also gives rise to a magnetic moment:

µS = gS
q

2m
S, (4.2)

where gS is the spin gyromagnetic ratio and S the spin angular momentum vector.

Remark. For an electron gL = 1, gS = 2 and q = −e. Note that gS doesn’t exactly equal 2 there
are some corrections to this value due to QED, which is also a perturbation theory but in the
context of quantum field theory.

Now if we are going to apply degenerate PT to a hydrogenic system that experiences the Zeeman
effect and SOC, we need to know the forms of the perturbation, V̂ , we apply. For the Zeeman
effect, the operator is found from the interaction energy between µ and B:

Magnetic interaction energy

V̂mag = −µ̂ · B̂ =
e

2m
(L̂z + 2Ŝz) ·B, (4.3)
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where we assume that B = (0, 0, B), i.e we align the magnetic field along the ẑ direction, and L̂z

and Ŝz are the normal operators for returning the z-component of the orbital and spin angular
momentum.

In the rest frame of the electron, the nucleus is orbiting it. This means the electron ”sees” a
magnetic field due do the motion of the charged nucleus. It is given by:

B =
−v ×E(r)

c2
, (4.4)

where v is the relative velocity of the nucleus, E(r) is the electric field due to the nucleus and
c is the speed of light. Since the electric field of the nucleus is spherically symmetric we may
write it as:

E(r) = −∇V = −∂V
∂r

r̂, (4.5)

where V is the scalar electric potential of the nucleus. The operator for SOC takes the form:

Potential due to spin-orbit coupling

V̂SOC = −1

2
µ̂s · B̂, (4.6)

where the factor of 1
2 arises from the Thomas precession which is a relativistic effect. So substi-

tuting in Eq. (4.2) and Eq. (4.4) into the above equation we find:

V̂SOC =
e

2m

Ŝ · (v × r)

c2
1

r

∂V

∂r
, (4.7)

where we have used that the radial unit vector, r̂ = r
r . Then using the relations p = mv,

L̂ = r̂ × p = −p× r̂ and Ŝ · L̂ = L̂ · Ŝ, we find:

V̂SOC =
−e

2m2c2
1

r

∂V

∂r
L̂ · Ŝ. (4.8)

There are a number of other forms that this operator can take, the most useful of which is found
using:

Ĵ2 = (L̂+ Ŝ)2 = L̂2 + Ŝ2 + 2L̂ · Ŝ , (4.9)

in combination with Eq. (4.8):

V̂SOC = f(r)[j(j + 1)− l(l + 1)− s(s+ 1)], (4.10)

where it should be noted that the square brackets here don’t mean commutator they are just
brackets, and f(r) is given by:

f(r) =
~2

4m2c2
1

r

∂Vc
∂r

, (4.11)

where Vc(r) is the potential energy of the electron in the nucleus’ electric field, −Ze2

4πε0r
.
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4.2.1 Correct eigenstates using symmetry

As stated at the end of Chapter 2, there is a more elegant way of doing degenerate PT. Instead
of forming a matrix and finding its eigenvalues and corresponding eigenstates, we can figure out
the correct eigenstates to use for degenerate PT using symmetry arguments.

The correct eigenstates for degenerate PT are ones that commute with the unperturbed Hamil-
tonian, Ĥ0, the perturbation we apply, V̂ , and an arbitrary operator, Â, that we are free to
choose. Once these eigenstates have been identified you can just use Eq. (2.4) to calculate the
first order energy corrections for a degenerate system. Remember this expression is just the
equivalent expression for Eq. (1.17) that accounts for degeneracy.

The reason this works is because any operators that commute with one another must share a
set of common eigenstates. So if [Ĥ0, Â] = [V̂ , Â] = 0, then they all share a common set of
eigenstates. Then so long as all the eigenvalues of Â are unique, this automatically leads to the
diagonalisation condition, Eq. (2.3), being satisfied. This in turn means that those eigenstates
are the correct unperturbed states for degenerate PT.

Don’t worry too much about trying to understand why this works, just know that the correct
eigenstates for degenerate PT are ones that are eigenstates of Ĥ0, V̂ and another operator, Â.

4.2.2 Spin-Orbit Coupling

We’ll start off by considering the case of just SOC, so no external magnetic field has been applied.
We start off with the symmetry argument method. Since we are considering a hydrogenic system,
i.e a single electron orbiting a nucleus, the eigenstates of the unperturbed system only depend
on the principal quantum number, n. We will use Eq. (4.10) as our perturbation, which requires
eigenstates that depend on l, s and j. Now we choose our other operator, Â, to be Ĵz. This
is just the total angular momentum equivalent of L̂z or Ŝz, i.e Ĵz = L̂z + Ŝz. This means the
correct eigenstates for degenerate PT look like |n, l, s, j,mj〉. So now we can figure out the first
order energy corrections using these eigenstates and Eq. (2.4):

Energy due to SOC

E1
SOC = 〈n, l, s, j,mj |V̂SOC|n, l, s, j,mj〉 , (4.12)

then inserting Eq. (4.10) and Eq. (4.11), we find:

E1
SOC =

~2

4m2
ec

2
[j(j + 1)− l(l + 1)− s(s+ 1)]

〈
1

r

∂Vc
∂r

〉
, (4.13)

where again the square brackets are just brackets and don’t mean commutator, and the expec-
tation value of 1

r
∂Vc
∂r depends on which (n, l) orbital the electron occupies. You won’t be asked

to calculate what this expectation value is since its quite hellish to derive, but simplifying the
above expression we find:

E1
SOC =

|En|α2

n

(
1

l + 1
2

− 1

j + 1
2

)
(4.14)

where α is the fine structure constant which equals 1
137 and En are the energy levels of a

hydrogenic system, Eq. (6.2). Normally the factor in front is just written as λ.

From this equation we see that if we are in the s orbital of an energy level, i.e l = 0, then
E1

SOC = 0 since j = s = 1
2 , meaning the energy levels remain the same. However if l 6= 0 then

each orbital is split into 2 levels, given by j = l ± 1
2 , with each level being 2j + 1 degenerate.
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For the p orbital, l = 1, then j may either be 3
2 or 1

2 , with the corresponding corrections being
E1

SOC = λ
6 and E1

SOC = −λ
2 .

This problem can also be solved using the brute force method, here the degenerate eigenstates
are described by |ml,ms〉. This time we use a different form of the perturbation for SOC, we
take Eq. (4.8) and expand out L̂ · Ŝ in terms of the raising and lowering operators, so that:

V̂SOC = δL̂ · Ŝ = δ

[
L̂zŜz +

1

2

(
L̂+Ŝ− + L̂−Ŝ+

)]
, (4.15)

where again the square brackets don’t mean commutator. As we described in Section 2, we form
the perturbation matrix using our degenerate eigenstates |ml,ms〉 and the perturbation given
by Eq. (4.15). At this point its very important to remember that the degenerate eigenstates are
orthonormal to each other, Eq. (2.1), as well as the effect that the raising and lowering operators
have on eigenstates. Note that the raising and lowering operators will be given to you in the
exam. That being said, it is important to review how they act on quantum states

A quick tangent on raising and lowering operators

This should be familiar to you (you don’t need to memorise per se, but doing these calculations
in the exam should take minimal effort).

L̂± |n, l,ml, s,ms〉 = ~
√
l(l + 1)−ml(ml ± 1) |n, l,ml ± 1, s,ms〉 (4.16)

Ŝ± |n, l,ml, s,ms〉 = ~
√
s(s+ 1)−ms(ms ± 1) |n, l,ml, s,ms ± 1〉 (4.17)

Then if you multiply one operator by another, treat it as composition of operators!

Forming the matrix

Remember for degenerate PT, you need to calculate the matrix elements which will be given in
the form

E1
SOC =

〈
ml,ms

∣∣∣ δL̂ · Ŝ
∣∣∣m′

l,m
′
s

〉
(4.18)

Let’s take this step by step. You may need to do this in the exam after all

Algorithm to form the potential matrix

1. Create a table where each column is labelled with the ml,ms values. Label each
row the same way. It actually doesn’t matter how you sort the rows and column as
long as the states are ordered identically. Mark the leading diagonal for yourself.

2. Apply δL̂ · Ŝ to each state. take your time doing this, it’s easy to miscalculate.
Keep track of all the non-zero terms, and make a note of the states on either side
of the = sign.

3. When you’re done, go to the row labelled with the state you applied the operator
to, then go to the column labelled with the final state. Fill that slot in with the
coefficient of that final state. By symmetry, you can also fill in the element directly
opposite the leading diagonal with the same entry. Repeat until you have exhausted
all your calculations

4. The final table is your matrix. It will be in block-diagonal form and if it isn’t
something is wrong. You then must solve the secular determinant of that
matrix. There is a theorem in linear algebra which says the determinant of a
block-diagonal matrix is equal to the product of the determinant of all the individual
blocks. Note that the determinant of a 1× 1 block is itself.

5. The eigenvalues will give you the energy shifts for each quantum state.
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Note that repeated eigenvalues suggest that there are states which are shifted by the same
amounts. This does not completely life (eliminate) the degeneracy of every state. However SOC
along eliminates degeneracy in l, i.e. each l state is split into 2 ml states.

Continuing with the example, our states we have available are∣∣∣∣+1,+
1

2

〉
,

∣∣∣∣0,−1

2

〉
,

∣∣∣∣−1,−1

2

〉
,

∣∣∣∣0,+1

2

〉
,

∣∣∣∣+1,−1

2

〉
,

∣∣∣∣−1,+
1

2

〉
,

Sorting this by order of ml gives∣∣∣∣+1,+
1

2

〉
,

∣∣∣∣+1,−1

2

〉
,

∣∣∣∣0,+1

2

〉
,

∣∣∣∣0,−1

2

〉
,

∣∣∣∣−1,+
1

2

〉
,

∣∣∣∣−1,−1

2

〉

Oh would you look at that, it automatically sorted itself out. We then form the matrix as so
(using this order of states, rather than the order of states in the lectures)

δ
2 0 0 0 0 0

0 − δ
2 0 0 0 0

0 0 0 δ
2

√
2 0 0

0 0 δ
2

√
2 0 δ

2

√
2 0

0 0 0 δ
2

√
2 − δ

2 0

0 0 0 0 0 δ
2


(4.19)

Then calculating the eigenvalues of this matrix, which correspond to the first order energy
corrections. We do this by forming the secular determinant, that is solve

det



δ
2 − E1 0 0 0 0 0

0 − δ
2 − E1 0 0 0 0

0 0 −E1 δ
2

√
2 0 0

0 0 δ
2

√
2 −E1 δ

2

√
2 0

0 0 0 δ
2

√
2 − δ

2 − E1 0

0 0 0 0 0 δ
2 − E1


= 0 (4.20)

We find that we get E1
SOC = δ

2 four times and E1
SOC = −δ two times. This result matches up

with that found using the correct unperturbed eigenstates, as we would expect. It also shows
that ordering of states doesn’t matter as long as you’re consistent about it.

4.2.3 Strong Field Zeeman Effect

If we apply an external magnetic field to a system, we will get the Zeeman effect. If this applied
field is larger relative to the SOC field, i.e V̂mag � V̂SOC , then we are in the regime of the
Strong field Zeeman effect. This means we can neglect any effects due to SOC and consider our
unperturbed system as just the hydrogenic system again. In this case we use the neat method
to find the first order energy corrections. The correct unperturbed eigenstates are given by
|n, l,ml,ms〉, with our perturbation described by Eq. (4.3), so the first order energy corrections
are found using Eq. (2.4) to be:

E1
mag = µBBz(ml + 2ms), (4.21)

where µB is the Bohr Magneton, given by e~
2me

. Note this is also known as the Paschen-Back
effect.
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4.2.4 Weak Field Zeeman Effect

Finally we consider what happens when we apply a small external magnetic field such that
V̂SOC � V̂mag. This means that our unperturbed system includes SOC, i.e the unperturbed
Hamiltonian is Ĥ0 + V̂SOC, with the external magnetic field V̂mag acting as the perturbation.
This problem again can be solved either with the brute force method or using the correct
unperturbed eigenstates directly.

The correct unperturbed eigenstates are, as before, |n, l, s, j,mj〉 with the perturbation given by
Eq. (4.3), so using Eq. (2.4) and that L̂z + 2Ŝz = L̂z + Ŝz + Ŝz = Ĵz + Ŝz, we find that the first
order energy corrections take the form:

First order shifts to the magnetic energy

E1
mag = mjgLµBB, (4.22)

where gL is the Lande g factor:

gL = 1 +
j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)
. (4.23)

You don’t need to memorise the gL-factor expression, but just note what the correction is and
know gL exists and you have to calculate it.

This means that each energy level is split into 2j + 1 energy levels separated by gLµBB.

Alternatively we can solve this using the brute force method. Here the degenerate eigenstates
are once again |ml,ms〉, and we use the unmodified version of Eq. (4.3) as our perturbation.
Here we find all the corresponding perturbation matrix elements and add them to the original
matrix we had when considering just SOC. Then as per usual we find the eigenvalues of this
matrix, now knowing the matrix elements are

E1
mag =

〈
ml,ms

∣∣∣ δL̂+ ·Ŝ + V̂mag

∣∣∣m′
l,m

′
s

〉
(4.24)

with the secular determinant being (using the order of states defined in these notes rather than
the lectures)

det



δ
2 + 2µBBz − E1 0 0 0 0 0

0 − δ
2 − E1 0 0 0 0

0 0 µBBz − E1 δ
2

√
2 0 0

0 0 δ
2

√
2 −µBBz − E1 δ

2

√
2 0

0 0 0 δ
2

√
2 − δ

2 − E1 0

0 0 0 0 0 δ
2 − 2µBBz − E1


= 0

(4.25)
to find the first order energy corrections, which are found to be: δ

2 + 2µBBz, δ
2 − 2µBBz,

δ
2 + 2

3µBBz, −δ + 1
3µBBz, δ

2 − 2
3µBBz and −δ − 1

3µBBz for an l = 1, s = 1
2 system.

4.3 Key Results
Know how to calculate the magnetic field energy and SOC energy. Moreover you should be able
to apply raising and lowering operators easily, and make sure you’re able to form the secular
determinant. Remember when forming the matrix, the order of the states doesn’t matter but
some orders give easier to calculate determinants.
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Chapter 5

Identical Particles

5.1 Introduction
It is impossible to follow and identify one particular particle when dealing with a quantum
system of identical particles. This is because any measurement we wish to make of the system
will disturb it and all the particles are indistinguishable from one another.

The wave function, |ψ(r1, r2, . . . , rk, . . . , rN , t)〉, is for a system which contains N indistinguish-
able particles, where rk is the position vector for the kth particle. This has the same normalisa-
tion condition as for a single particle state:

〈ψ|ψ〉 = 1 =

∫
|ψ(r1, r2, . . . , rk, . . . , rN , t)|2dr1dr2 . . . drk . . . drN . (5.1)

where by drk we mean dxkdykdzk This integral says that at some time t, there is a particle
within a volume dr1 of r1 and another particle within d3r2 of r2, etc. and not that there is a
specific particle, since we can’t distinguish between them.

Operators acting on multi-particle eigenstates must be symmetric under the permutation
of particle labels, due to this indistinguishability.

An example of this is the Hamiltonian for the two electrons orbiting a Helium nucleus:

Ĥ(1, 2) =
2∑

i=1

(
− ~2

2m
∇2

i −
2e2

4πε0ri

)
+

e2

4πε0r12
(5.2)

The indistinguishability of the electrons means that:

Ĥ(1, 2) = Ĥ(2, 1) (5.3)

as no matter the order of the labels in the Hamiltonian we should get the same energy value.

Definition 5.1.1. The idea of eigenvalues of operators being degenerate under particle exchange
is called exchange degeneracy.

5.2 Particle Exchange Operator

We can define an operator, P̂ij that exchanges the ith and jth particles with each other, such
that:
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P̂ij(Ĥ(i, j) |ψ(i, j)〉) = Ĥ(j, i) |ψ(j, i)〉 (5.4)
= Ĥ(i, j)P̂ij |ψ(i, j)〉 , (5.5)

where in between the lines we use a generalisation of Eq. (5.3) and that |ψ(j, i)〉 = P̂ij |ψ(i, j)〉.
From this we can see that:

Particle Exchange Operator

P̂ijĤ(i, j) |ψ(i, j)〉 = Ĥ(i, j)P̂ij |ψ(i, j)〉 , (5.6)

which means that the commutator [Ĥ(i, j), P̂ij ] = 0, i.e the exchange operator commutes with
the Hamiltonian operator. Crucially this means they share a common set of eignenstates
(theorem from linear algebra). Also as particles are indistinguishable, P̂ij must also commute
with any operator that corresponds to an observable and so also share a common set of eigen-
states. From your physics knowledge, this makes sense. Imagine 2 electrons whirling together,
and suppose you know their initial states and the surrounding environment at all times. If
you swapped the electron positions, then started them off in the exact same environment and
positions, you would get the exact same physics!

Remark. It is not true that if an operator (even if it represents an observable) commutes with P̂ij

then it automatically commutes with the Hamiltonian - namely the commutator is not transitive,
so don’t fall into this trap.

Proposition 5.2.1. The exchange operator is a self-inverse operator, i.e. applying it twice
returns us to the same state, so it is an operator which is the inverse of itself.

P̂ijP̂ij = I =⇒ P̂ij = P̂−1
ij (5.7)

where I is the identity operator (matrix)

Proof.
P̂ijP̂ij |ψ(i, j)〉 = P̂ij |ψ(j, i)〉 = |ψ(i, j)〉 , (5.8)

This means that the eigenvalues of P̂ij must be ±1. The +1 eigenvalue indicates a symmetric
eigenstate, whilst the −1 eigenvalue indicates a fully anti-symmetric eigenstate. This means any
physically acceptable eigenstate that represents identical particles must be symmetric or fully
anti-symmetric due to P̂ij commutating with operators representing physical observables and
hence share a common set of eigenstates.

Note that due to the TDSE, a symmetric eigenstate will remain symmetric and the same
is true for an anti-symmetric eigenstate.

5.3 Fermions and Bosons

If our eigenstate describes a collection of identical particles with half integer spin, then it is
anti-symmetric, for example:

Ψ(1, 2) =
1√
2
(ψa(1)ψb(2)− ψa(2)ψb(1)), (5.9)
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and so when the exchange operator is applied, we get an eigenvalue of −1. Note how if one of
the particles (either particle 1 or 2) occupies the same quantum state as the other (a = b), then
the eigenstate disappears:

Ψ(1, 2) =
1√
2
(ψa(1)ψa(2)− ψa(2)ψa(1)) = 0. (5.10)

This is the Pauli Exclusion Principle (PEP).

Pauli Exclusion Principle (PEP)

Any two half integer spin particles cannot occupy the exact same quantum state as each
other

Definition 5.3.1. Half-integer spin particles are called fermions

They obey Fermi-Dirac statistics which is given by the Fermi-Dirac distribution:

Fermi-Dirac Distribution

f(E) =
1

eβ(E−µ) + 1
, (5.11)

where f(E) gives the average occupation of a quantum state of energy E, β = 1
kBT and µ is the

chemical potential of the system.

However if our eigenstate describes a collection of identical particles with integer spin, then it
is symmetric:

Ψ(1, 2) =
1√
2
[ψa(1)ψb(2) + ψa(2)ψb(1)], (5.12)

whereupon application of the exchange operator we obtain an eigenvalue of +1. These particles
have no such restriction like the PEP.

Definition 5.3.2. Integer-spin particles are called bosons

They obey Bose-Einstein statistics which is described by the Bose-Einstein distribution:

Fermi-Dirac Distribution

f(E) =
1

eβ(E−µ) − 1
, (5.13)

Normally eigenstates, at least of simple systems, can be split into the product of a spatial
component and a spin component. For a fermion, which needs an anti-symmetric eigenstate,
the spatial and spin components must be of opposite parity. So when dealing with multiple
fermions, this means the spin component may either by a spin singlet (symmetric) or a spin
triplet (anti-symmetric).

In order to form an anti-symmetric eigenstate for N non-interacting fermions within a common
potential, we calculate the Slater determinant of an n×N matrix, where n is the number of
eigenstates available for each of the N fermions. The Slater determinant looks something like:
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ΨAS(1, 2, . . . , N) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

φEaσa(1) φEaσa(2) . . . φEaσa(N)

φEbσb
(1) φEbσb

(2) . . . φEbσb
(N)

. . .

φEnσn(1) φEnσn(2) . . . φEnσn(N)

∣∣∣∣∣∣∣∣∣∣∣∣
(5.14)

where 1√
N !

is a normalisation constant and φEnσn(N), is the eigenstate with energy En and spin
σn that the N th fermion occupies. It’s important to note that if we interchange two columns,
this is equivalent to applying the exchange operator, and the sign of the determinant changes.
Also if we attempt to put two fermions into exactly the same quantum state (same energy level
and same spin) then the determinant vanishes, as we would expect by the PEP.

Note that the Slater determinant is square, i.e. n = N . Trying to fit N > 2 particles into 2
quantum states is not going to go well.

5.4 Example: 2 electron system

Consider a system made up of two electrons, denoted by 1 and 2. Suppose they are constrained
to a two-level system with energies Ea, Eb with positions ra, rb. We denote spin up by sα and
spin down by sβ.

We know the total wavefunction (which must be antisymmetric) describing the system is made
up of spatially dependent parts, e.g. ura(1) and urb(2), and spin dependent parts, e.g.
sα(1), sβ(1). This gives us 4 possibilities for wavefunctions

1√
2
[ura(1)urb(2)− urb(1)ura(2)]sα(1)sα(2) (5.15)

1√
2
[ura(1)urb(2)− urb(1)ura(2)]sβ(1)sβ(2) (5.16)

1√
2
[ura(1)urb(2)− urb(1)ura(2)]

1√
2
[sα(1)sβ(2) + sβ(1)sα(2)] (5.17)

1√
2
[ura(1)urb(2) + urb(1)ura(2)]

1√
2
[sα(1)sβ(2)− sβ(1)sα(2)] (5.18)

Recall that S =
∑

ims,i (the system spin angular momentum) and ms (the z-component of
individual fermion spin) has the range of ms = −s,−s + 1, . . . , s with s = 1/2 for fermions.
Consequently MS = −S, . . . , S. Therefore we have a spin triplet when S = 1 because when
S = 1,MS = −1, 0,+1, i.e. we have 3 spin states. We also have a spin singlet at S = 0 since
MS = 0 only.

The consequence of these singlets and triplets will come into play in the next chapter.

The spin part of the functions are eigenfunctions of the operators representing the total spin S
of the two particles and of their total z component MS

• The first wavefunction has spin up for both particles, so both are spin up. This represents
S = 1,MS = +1

• Second wavefunction has sβ for both particles, so both are spin down. Then S = 1,MS =
−1

• Third wave function has sum of spin-up,spin-down states, so S = 1,MS = 0

• Final wavefunction has difference of spin-up,spin-down states do S = 0,MS = 0
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The way you calculate the symmetric eigenstate for N non-interacting bosons within a common
potential is found by calculating the Slater permanent from the same n × N matrix, as
Eq. (5.14). The only difference between the permanent and determinant of a matrix is that you
don’t have to worry about the negative signs in the co-factors when calculating the permanent.
You don’t have to care about Slater permanents for the exam.

5.5 Key Results
In order for an eigenstate of an operator, which corresponds to a physical observable, to be
physically acceptable it must also be an eigenstate of the particle exchange operator.

Changing the order of particle labels should have no measurable difference on the observable
values that the operator return, this is exchange degeneracy.

Fermions are particles with half integer spin, they are described by Fermi-Dirac statistics,
Eq. (5.11). Their overall eigenstate must be anti-symmetric. This is apparent when oper-
ated on by the particle exchange operator which returns an eigenvalue of −1. This eigenstate
can be calculated using the Slater determinant, Eq. (5.14). Fermions must obey the PEP, which
prevents two fermions from occupying the exact same quantum state.

Bosons are particles with integer spin, they are desribed by Bose-Einstein statistics, Eq. (5.13).
Their overall eigenstate must symmetric. So when operated on by the particle exchange operator
it returns an eigenvalue of +1. They have no such restriction like the PEP.
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Chapter 6

Multi electron atoms and the
periodic table

6.1 Multi-electron atoms

So far during this module, the focus has been on systems containing one electron. However we
will now briefly look at some approximations of multi-electron systems. The first is essentially
the hydrogenic atom, where each electron is treated as only seeing the Coulomb field due to the
nucleus of charge Ze it orbits, in which case the Hamiltonian of the system looks like:

Ĥ(r1, r2, ..., rZ) =
−~2

2m

Z∑
i=1

∇2
i +

Z∑
i=1

−Ze2

4πε0ri
, (6.1)

where the eigenstates and energy levels are just those of a hydrogen like atom, i.e they only
depend on the principal quantum number, n:

En =
−Z2 × 13.6eV

n2
(6.2)

Note each energy level is 2n2 degenerate, where the factor of 2 arises to account for spin. Each
n level is known as an energy level shell.

This approximation can be improved drastically by taking into account the effect electrons have
on one another. This is done by assuming the electrons move in a field due to the nucleus that
has been screened by the presence of the other Z − 1 electrons, in which case the Hamiltonian
takes the form:

Ĥ(r1, r2, ..., rZ) =
−~2

2m

Z∑
i=1

∇2
i +

Z∑
i=1

−Veff(ri), (6.3)

where:

Veff(ri) =
−Zeffe

2

4πε0ri
+

~2l(l + 1)

2mr2i
, (6.4)

where Zeff is the effective charge on the nucleus that the electron sees due to the other electrons
shielding the nucleus. This means that in this approximation, the energy levels of electrons
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depend on the value of n and l and each shell has a degeneracy of (2s+ 1)(2l + 1). The
eigenstates of this system are now labelled according to the values n, l, ml and ms.

The second term is known as the potential barrier and accounts for the difference in energy
between electrons which reside in the same shell. This is because for each shell there are a
number of orbitals that the electrons can occupy, and these orbitals vary in distance from the
nucleus. Using this potential barrier term and the energy levels for a hydrogenic atom, Eq. (6.2),
we can begin to order the atomic orbits of atoms.

The ordering of these atomic orbits, according to their energy is: 1s, 2s, 2p, 3s, 3p, [4s, 3d], 4p,
[5s, 4d], ..., where they are written in the form (nl), with l = 0 ≡ s, l = 1 ≡ p, l = 2 ≡ d,
l = 3 ≡ f , etc. Note that the terms in square brackets are of similar energy, as the coulombic
attraction and potential barrier compete.

The most accurate Hamiltonian, with no approximations involved, also includes the interactions
between the electrons directly and not just through the coulombic field attraction of the nucleus.
It is given by:

Ĥ(r1, r2, ..., rZ) =
−~2

2m

Z∑
i=1

∇2
i +

Z∑
i=1

−Veff(ri) +

i 6=j∑
i,j=1

e2

4πε0|ri − rj |
(6.5)

The periodic table is formed by considering the energies of the atomic orbitals and by obeying
the PEP when filling up these orbitals. This orders elements into periods and groups of the
periodic table, which determine which elements have similar physical and chemical properties
respectively.

6.2 The Periodic Table

You should know the properties of notable groups/blocks of the periodic table. You should also
be able to know how to state the ground state electronic configuration of atoms, you do not
need to memorise any.

Definition 6.2.1. The (Pauling) electronegativity scale from 0.0 - 4.0 measures a tendency of
an atom’s ability to attract electrons to its outer shell, with 0.0 being the weakest and 4.0 being
the strongest

Remark. Fun fact: (non-examinable). Caesium holds the weakest electronegativity at 0.659
whilst fluorine holds the strongest at 4.0.

• Hydrogen: a single electron 1s+ where + means spin up

• Noble gases (He, Ne, Ar, etc.): Full valence shell in the ground state, so they are generally
chemically inert.

• Alkali metals (Li, Na, K, Rb, Cs, Fr): single electron in the valence shell. Low electroneg-
ativity.

• Alkali Earth metals (Be, Mg, Ca, Sr): 2 electrons in outer shell. Slightly higher electroneg-
ativity than alkali metals but still low.

• Halogens (F, Cl, Br, I): 7 electrons in valence shell, 5 in its outermost p-subshell. High
electronegativity, wish to accept one electron to form a stable closed shell.

• Transition metals: Here the (4s) shell fills before the (3d). As a result, the series of
elements in which the 3d states are being filled all have similar chemical properties. This
is the same for the (4d) and (5d) states.
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• Rare Earths: Here the (4f) shell fills after the (6s) shell is filled so the rare earths have
similar chemical properties. Many of the rare earths are magnetic due to unpaired electrons
in the f shel

6.3 Spectroscopic Notation

Instead of writing orbital states as (nl), we can describe them by assigning total angular mo-
mentum quantum numbers. This means we describe states using multiplets which take the form
2S+1L, where L is the total orbital angular momentum of the (nl) orbital, S is the total spin
momentum of the (nl) orbital and 2S + 1 is known as the multiplicity. As before with the
single particle state orbital angular momentum quantum number l, we write letters instead of
numbers, so

L = 0 → S

1 → P

2 → D

3 → F

4 → G

...

and then for higher L we follow alphabetical order skipping letters L,P,Q.

We may also combine the values L and S to give J = L + S, the total angular momentum
of the system. This is used in the spectroscopic term which we write as 2S+1LJ which describes
the multiplet of the atom.

6.4 Hund’s Rules
Hund’s rules are a way of determining the correct spectroscopic term for the ground state of an
atom. They generally only work for the lighter elements. The process is:

Hund’s rules

1. First we maximise S =
∑

imsi

2. Next we maximise L =
∑

imli

3. For a shell that is less than half full J = |L− S|. However if the shell is more than
half full J = |L+ S| and if the shell is exactly half full then L = 0, so J = S.

The physical reasoning behind the first rule is that there is large coulombic repulsion between
electrons that occupy the same space but with opposite spins, so is not favourable in terms
of energy. For the second rule, the reasoning is similar in that repulsion between electrons is
minimised for larger L as the electrons spend more time further apart, meaning the overall
energy of the system is lower.

6.5 Spin-orbit and Zeeman interactions
Finally we consider the effects of spin-orbit coupling and the application of a magnetic field.
Instead of specifying (2L + 1)(2S + 1) states for 2S+1L multiplet by the quantum numbers
L, S,ML and MS we can use L, S, J,MJ instead where again J = L+ S,L+ S − 1, . . . , |L− S|
and MJ =ML +MS = −J,−J + 1, . . . , J .

In Chapter 4, spin-orbit coupling perturbation splits the 2S+1L multiplet into several levels
characterised by L, S, and J and denoted by 2S+1LJ .
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However, SOC did not completely lift the degeneracy in J , as each level was 2J+1-fold degenerate
corresponding to the values of MJ . The Zeeman effect lifts any remaining degeneracy (because
the magnetic field interacts with spin) which means every MJ level is a singlet.

6.6 Key Results
You should make sure that you know what each of the quantum numbers n, l, ml and ms mean
in regards to atomic orbitals, as well as be able to calculate L and S for multi-electron atoms.
However the most important thing to take from this section is how to find the ground state
multiplet for the electronic structure of some atom, using Hund’s rules, and then being able to
write it in spectroscopic notation. You will never have to find an excited state multiplet it will
always be the ground state multiplet.
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Chapter 7

Time dependent PT

7.1 Introduction
Up to this point all the systems we have solved are time independent, i.e the Hamiltonian has
no time dependence Ĥ 6= Ĥ(t), such that the potential energy operator, V̂ , is only a function of
position and not time: V̂ = V̂ (r). This is known as quantum statics. This means that the Time
Dependent Schrodinger Equation (TDSE):

i~
∂

∂t
|Ψ(r, t)〉 = Ĥ(r) |Ψ(r, t)〉 , (7.1)

can be solved using separation of variables, such that we can write Ψ(r, t) = ψ(r)φ(t), where
ψ(r) satisfies the Time Independent Schrodinger Equation (TISE):

Ĥ(r) |Ψ(r)〉 = E |Ψ(r)〉 (7.2)

and φ(t) = e
−iEt

~ , with E the energy eigenvalue corresponding to the eigenstate |Ψ(r)〉. However
in this section we consider some basic quantum dynamics, i.e V̂ = V̂ (r, t).

7.2 Derivation

7.2.1 Non-Stationary States

Recall that for a quantum static system, if the system occupies an eigenstate of the time inde-
pendent Hamiltonian, Ĥ0, then it is said to be in a stationary state of the system. This just
means that no matter what time you measure the system it is always in the same eigenstate
with the same eigenvalue, i.e initially it’s in the state |ψm〉 and then at some later time t in state
|ψm〉 e

−iEmt
~ which are equivalent once a measurement is applied.

However now consider what happens when the same quantum static system is not in a stationary
state of the system, |Ψ(r, t)〉. Suppose at t = 0, the state of the system may be written as a
linear combination of the complete set of eigenstates that the system can occupy:

|Ψ(r, t = 0)〉 =
∑
n

cn |ψn〉 , (7.3)

such that:

|Ψ(r, t)〉 =
∑
n

cn |ψn〉 e
−iEnt

~ . (7.4)
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This linear combination of stationary states means that we have a system, described by a
Hamiltonian which is inherently time independent, that can undergo transitions (or quantum
jumps) between different states assuming the system doesn’t start in a stationary state.

This should become more clear after the following 2-level system example. Consider a system
with Hamiltonian, Ĥ0, which is initially in the state:

|Ψ(r, t = 0)〉 = cm |ψm〉+ cn |ψn〉 , (7.5)

where |ψm〉 and |ψn〉 are the orthonormal eigenstates of the system, with eigenvalues Em and
En respectively. This means that in the absence of any perturbation we have:

|Ψ(r, t)〉 = cm |ψm〉 e
−iEmt

~ + cn |ψn〉 e
−iEnt

~ , (7.6)

where we note that normalisation requires |cm|2 + |cn|2 = 1. Consider the expectation value of
this system with respect to some arbitrary time independent operator Â:

〈ψ| Â |ψ〉 = 〈a〉t = |cm|2Amm + |cn|2Ann + 2Re[c∗mcnAmne
iωt], (7.7)

where |ψ〉 is given by Eq. (7.6), ω = Em−En
~ , Amn = 〈ψm| Â |ψn〉 and we have used the hermiticity

of Â. Note the subscript t on 〈a〉 denotes that the expectation value varies with time. From
Eq. (7.7) we can see that 〈a〉t oscillates with a period T = 2π

ω between:

|cm|2Amm + |cn|2Ann ± 2c∗mcnAmn, (7.8)

since Re[eiωt] = cos(ωt).

This oscillation represents the transitions or quantum jumps between eigenstates .

7.2.2 Time Dependent Perturbation Theory

In general, to allow the quantum jumps between energy eigenstates we saw in the previous
section we can allow Ĥ = Ĥ(r, t). This is normally done by introducing a time dependent
potential, V̂ (t), which we can treat as a perturbation if V̂ (t) � Ĥ0. This is known as time
dependent perturbation theory. This means that the Hamiltonian of the system will now take
the form:

Ĥ = Ĥ0 + V̂ (t) (7.9)

If we introduce a time dependent perturbation, V̂ (t), to our 2 level system, Eq. (7.6) becomes:

|Ψ(r, t)〉 = cm(t) |ψm〉 e
−iEmt

~ + cn(t) |ψn〉 e
−iEnt

~ , (7.10)

where the coefficients cm(t), cn(t) are now functions of time. This is the main difference compared
to time-independent PT. We wish to determine the form of these coefficients. We can generalise
this argument easily to an n-level system with n eigenstates. We can solve for each cn(t) by
demanding that our linear superposition of states, analogous to Eq. (7.10):

|Ψ(r, t)〉 =
∑
n

cn(t) |ψn〉 e
−iEnt

~ (7.11)

obeys the TDSE, Eq. (7.1), which results in:
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i~
∑
n

ċn(t) |ψn〉 e
−iEnt

~ =
∑
n

V̂ (t) |ψn〉 e
−iEnt

~ cn(t). (7.12)

where ċn(t) =
dcn
dt

.

By pre-multiplying the above equation by 〈ψp|, i.e take the inner product, we find:

i~
∑
n

ċn(t) 〈ψp|ψn〉 e
−iEnt

~ =
∑
n

〈
ψp

∣∣∣ V̂ (t)
∣∣∣ψn

〉
e

−iEnt
~ cn(t) (7.13)

i~ċp(t)e
−iEpt

~ =
∑
n

〈
ψp

∣∣∣ V̂ (t)
∣∣∣ψn

〉
e

−iEnt
~ cn(t) (7.14)

i~ċp(t) =
∑
n

Vpn(t)e
iωpntcn(t) (7.15)

Also, Vpn = 〈ψp| V̂ |ψn〉 and ωpn =
Ep−En

~ , which is known as the Bohr frequency. Note in the
second line, on the LHS of the equation we have used the orthonormality condition 〈ψp|ψn〉 = δnp
which sets n = p and removes the summation. We then move the exponential on the LHS to
the RHS. Up to this point we haven’t actually applied any perturbative expansions, all of this
is exact. However we now assume V̂ (t) is small and that the system begins in an eigenstate of
the system, i.e cp(0) = δpn. What we are doing is treating cp(t) as the sum of perturbations

cp(t) = c(0)p + c(1)p (t) + c(2)p (t) + . . . (7.16)

By our initial condition, we require c(0)p = δpn, so that to first order we find from Eq. (7.15):

i~ċ(1)p (t) = Vpn(t)e
iωpnt, (7.17)

where the superscript on the coefficient cp(t) represents to first order. We find this equation
from substituting the zeroth order values onto the RHS of Eq. (7.15). Now, take it slow.
Equation. (7.17) is the linear ODE (in time t). Therefore, we can directly integrate it such that

c(1)n (τ) =
1

i~

∫ τ

0
Vpn(t)e

iωpntdt (7.18)

subject to the initial condition Eq. (7.17). Now, bringing it all together, we have the total
amplitude to first order is given by (for p = n) is the sum c1n(τ) = c

(0)
n (τ) + c

(1)
n (τ) is given by

c1n(τ) = 1 +
1

i~

∫ τ

0
Vnn(t)dt , (7.19)

and:

c1p(τ) =
1

i~

∫ τ

0
Vpn(t)e

iωpntdt. (7.20)

Remark. It is in the lecture notes that he suddenly removes the brackets from the superscripts
of c. We’ve gone with the convention that c(1)n represents the first-order correction itself and
then c1n is the first order correction plus c(0)n , i.e.the total amplitude to first order. Note then
Eq. (7.20) doesn’t have brackets in the superscript, but that’s because we interpret it as the
total probability of a transition between non-equal states happening! In the exam this distinction
won’t matter.
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The terms c1p(τ) is the amplitude of the transition from state n → p if p 6= n, i.e. the
weight given to the transition happening.

Similarly,

We interpret |c1p(τ)|2 as the probability to first order that after some time τ the system
has performed a transition from state |ψn〉 to |ψp〉.

Note that for first order PT to be valid we require:

P (1)
n→p(τ) = |c1p(τ)|2 � 1, (7.21)

i.e that the probability of such a transition occurring is much smaller compared to the
probability of the system remaining in its initial state.

7.2.3 Example: Sinusoidal perturbation

We now consider a specific example where the perturbation is sinusoidal in time:

V̂ (r, t) = V̂ (r) cos(ωt). (7.22)

Using this form of the perturbation in Eq. (7.20) and considering only driving frequencies, ω,
that are close to the resonant Bohr frequency, ωpn. Set Vpn = 〈ψp|Ĥ(r)|ψn〉 which is independent
of t, and remember cos(ωt) = 1

2(e
iωt + e−iωt) we find:

c1p(τ) =
Vpn
2i~

∫ τ

0

{
ei(ωpn−ω)t + ei(ωpn+ω)t

}
dt

= −Vpn
2~

{
ei(ωpn−ω)τ − 1

ωpn − ω
+
ei(ωpn+ω)τ − 1

ωpn + ω

}

= −iVpn
~

sin[(ωpn − ω) τ2 ]

ωpn − ω
ei(ωpn−ω) τ

2 ,

(7.23)

therefore the resulting probability transitioning from n→ p (to first order) is:

P (1)
n→p(τ) =

Vpn
2

~2
sin2[(ωpn − ω) τ2 ]

(ωpn − ω)2
. (7.24)

Note how this probability oscillates with time. Further note, for future reference, that the
approximation of considering only ω ' ωpn is known as the rotating wave approximation
(See Chapter 9).

• The perturbation is valid when the maximum probability at

|Vpn|2

~2(ωpn − ω)2
� 1

• At times ts = 2sπ
|ωpnω| , where s ∈ N the particle is certain to be back in the lower energy

state.

• the probability of a transition is greatest when the driving frequency is close to the natural
frequency, ωpn
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We now consider the case where the system isn’t in a stationary state and our perturbation is
time independent, V̂ 6= V̂ (t). So transitions will occur which means we can use time dependent
PT. Then from Eq. (7.20) we find that:

c(1)p (τ) =
Vpn
~ωpn

(1− eiωpnτ ), (7.25)

and the resulting probability:

P (1)
n→p(τ) =

4|Vpn|2

~2
sin2(

ωpnτ
2 )

ω2
pn

. (7.26)

7.2.4 Fermi’s Golden Rule

Time dependent PT can also be used for when the final states are not discrete and well separated
- i.e they form a continuum. The number of states within some interval is given by ρ(Ep)dEp,
then we find:

P
(1)
n→G(τ) = τ

2π

~
[|Vpn|2ρ(Ep)]Ep=En . (7.27)

It’s important to note that this is proportional to τ , so the transition probability per unit time
is given by:

R
(1)
n→G(τ) =

2π

~
[
|Vpn|2ρ(Ep)

]
Ep=En

. (7.28)

This is an example of Fermi’s Golden Rule. In general,

Fermi’s Golden Rule

R
(1)
n→G =

dP
(1)
n→G(τ)

dτ
(7.29)

The equivalent Fermi’s Golden Rule for transitions between 2 discrete states is:

R
(1)
n→G(τ) =

2π

~
|Vpn|2δ(Ep − En) . (7.30)

Going back to the sinusoidal perturbation, instead of saying we are transitioning at 2 discrete
energy states, we are instead transitioning from n to a group of states G, then we must consider
the density of states ρ(Ep) which is constant within G, and so is |Vpn|2. We therefore must
integrate and set Ep = En, which means integrating in an interval [En −∆E,En +∆E]

P 1
n→G(τ) =

[
4|Vpn|2

~2
ρ(Ep)

]
Ep=En

× I

where

I =

∫ En+∆E

En−∆E

sin2
(
1
2ωpnτ

)
ω2
pn

dEp =
1

2
τ~
∫ τ∆E/2~

−τ∆E/2~

sin2 ξ

ξ2
dξ (7.31)

and ξ = 1
2ωpnτ . If ∆E � 2π~/τ , the integrals can be evaluated at ±∞, so the integral evaluates

to π and I = 1
2τ~π and we recover Eq. (7.27).
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7.2.5 Emission and Absorption of EM radiation

We are now going to use time dependent PT for the emission and absorption of EM radiation
by an atom. The atom primarily interacts with the electric component of the EM field:

E(r, t) = E0n̂ cos(k · r− ωt), (7.32)

where assuming the wavelength of EM radiation is much larger compared to the size of the atom
we can neglect the spatial variation of the field, this is known as the dipole approximation, and
results in the electric field taking the form:

E(r, t) = E0n̂ cos(ωt). (7.33)

This means that our perturbation takes the form:

V̂ (t) = D̂ ·E(t) =
1

2
D̂nE0(e

iωt + e−iωt), (7.34)

where D̂ is the electric dipole operator of the atom:

D̂ = −q
Z∑

j=1

r̂j (7.35)

This is effectively a sum over all the positions of the electrons that surround an atom with
atomic number, Z. Then following the same procedure as before we find:

c(1)p (τ) =
E0

2i~
〈ψp| D̂n |ψn〉

[
ei(ωpn−ω)τ − 1

i(ωpn − ω)
+
ei(ωpn+ω)τ − 1

i(ωpn + ω)

]
. (7.36)

We now have 2 cases to consider. The first is ω = ωpn which corresponds to stimulated absorp-
tion. So the probability of an incoming photon causing an electron to move from a lower energy
state to a higher energy state is:

P (1)
n→p(τ) =

E2
0

~2
| 〈ψp| D̂n |ψn〉 |2

sin2[(ωpn − ω) τ2 ]

(ωpn − ω)2
. (7.37)

The second case is that of ω = −ωpn which corresponds to stimulated emission. So the proba-
bility of an incoming photon causing an electron to move from a higher energy state to a lower
energy state by emitting another photon is given by:

P (1)
p→n(τ) =

E2
0

~2
| 〈ψn| D̂n |ψp〉 |2

sin2[(ωpn − ω) τ2 ]

(ωpn − ω)2
. (7.38)

7.2.6 Spontaneous Emission of Radiation

There is a third mechanism for radiation interacting with matter, known as spontaneous emis-
sion.

Definition 7.2.1. Spontaneous emission: an atom in an excited state makes a transition to-
wards a lower energy state, with the release of a photon, but without any applied electromagnetic
field to initiate the process
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Here even if an atom is in an excited state and there are no incident photons, the electron can
still move to a lower energy state. This is because due to QED there are still fields present that
the atom can interact with which can cause this photon emission even in a vacuum state.

The transition probability per unit time is

Rn→p =
4α

3q2c2
ω3
ip

∣∣∣〈ψp|D̂|ψn

〉∣∣∣2 . (7.39)

7.3 Key Results and the Algorithm
You should know how to carry out a generic perturbation theory question for both discrete
states and for continuous states using Fermi’s Golden Rule. Previous exam questions include
finding the probability of transitions, therefore understanding the example is a necessity.

The Algorithm

1. Identify your time-dependent perturbation V̂ (t).
2. Calculate the matrix element Vpn = 〈ψp|V̂ (t)|ψn〉.
3. Find the perturbation coefficients, e.g. in Eq. (7.20).
4. Find the orthonormal wavefunctions using those coefficients as in Eq.@(7.11).
5. Find any desired quantities the question asks for, e.g. the transition probability by

|c1p(τ)|2, or the transition probability per unit time as in Eq. (7.27).
Note you will either be given the density of states, or in more simple systems, be asked
to calculate the density of states (but the latter has never come up so far). Recall
from statistical mechanics that the density of states is the number of states available
per wavevector volume.
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Chapter 8

Lasers

8.1 Introduction

This chapter aims to explain the basic operating principles of how a laser actually works. This
is done using the Einstein coefficients and briefly motivates the use of time dependent PT
which was described in the previous chapter. It finishes by exploring how a He-Ne laser using
metastable states operates.

8.2 Derivation

A laser produces coherent, highly directional and near monochromatic light by using Light
Amplification by Stimulated Emission of Radiation (LASER). This process involves exciting
electrons to higher energy levels of an atom and then using an external source of photons to
cause stimulated emission in order to produce more photons.

8.2.1 Einstein Coefficients

An easy way to model how a laser fundamentally works is by using Einstein coefficients. This
is done by considering an atom contained within a cavity which possesses two energy levels, Ej

and Ei, which are separated by hν and where Ej is the ground state energy level.

The Holy Trinity

We assume there are 3 processes that an electron within this system can undergo in the
presence of light and that each of these processes had some constant associated with them
which contains the dynamics and likelihood of the process. They are stimulated ab-
sorption, stimulated emission and spontaneous emission, with Einstein coefficients
Bji, Bij and Aij respectively.

We further assume that the photons are quantised with energy hν and that the spectral energy
density of photons within the cavity is given by:

U(ν, T ) =
8πhν3

c3
(
e

hν
kBT − 1

) , (8.1)

where ν is the frequency of the photons and T is the temperature of the cavity.

So if we consider an ensemble of identical atoms in thermal equilibrium within the cavity, then
the rate of atoms which have electrons moving to the excited state is given by:
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Rj→i = NjBjiU(ν, T ), (8.2)

where Nj is the number of atoms with an electron in the ground state. This is because there
is only one process that can take the electron from the ground state, Ej , to the excited state,
Ei, which is stimulated absorption. However, the rate of atoms with electrons moving from the
excited state to the ground state is given by:

Ri→j = Ni[Aij +BijU(ν, T )], (8.3)

where Ni is the number of atoms with the electron in Ei. Contained in this are the other two
processes: stimulated emission and spontaneous emission, which cause electrons to move to the
ground state. If we assume that the rate of atoms with electrons moving between Ej and Ei are
equal, i.e Rj→i = Ri→j , we find that:

U(ν, T ) =
Aij

Bjie
hν

kBT −Bij

, (8.4)

where we have assumed that, since the atoms are in thermal equilibrium, the population of
atoms with an electron in the excited state follows the Boltzmann distribution:

Ni = Nje
−hν
kBT . (8.5)

If we compare Eq. (8.4) to Eq. (8.1), we find that when in thermal equilibrium:

Bij = Bji (8.6)
Aij

Bji
=

8πhν3

c2
. (8.7)

As a result, if we can experimentally determine one of the coefficients then we can determine
the other two coefficients as well.

Instead of the rate of change of atoms with electrons in some particular energy level, we can
consider the rate of change of the number of photons within some cavity simply by modifying
Eq. (8.2) and Eq. (8.3) to include the number of photons with a particular frequency, N(ν),
instead of U(ν, T ), such that:

dN+

dt
= NiAij +NiBijN(ν), (8.8)

is the rate of increase of photons within the cavity and:

dN−

dt
= NjBjiN(ν), (8.9)

is the rate of decrease of photons within the cavity. There will also be a loss of photons due to
leakage from the cavity. So the overall rate of change of photons within the cavity is given by:

dN

dt
=
dN+

dt
− dN−

dt
= NiAij +NiBijN(ν)−NjBjiN(ν)− N(ν)

τ0
, (8.10)
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where the final term accounts for the leakage of photons using some characteristic timescale,
τ0. If we assume that Bji = Bij , as suggested by Eq. (8.6), then we can rearrange the above
expression into the following form:

dN

dt
= NiAij +N(ν)

[
(Ni −Nj)Bij −

1

τ0

]
. (8.11)

This shows that unless Ni > Nj then dN
dt < 0, meaning the number of photons present in the

cavity will decrease with time. However according to Eq. (8.5) this won’t be the case at thermal
equilibrium. This means that through some non-thermal method we need to create a

population inversion where there are more atoms with their electrons occupying the
excited state than there are occupying the ground state.

There are a number of ways of creating this population inversion.

One of the more common methods is to use metastable states.

Definition 8.2.1. A metastable state is an (excited) electronic state with (unusually) long
lifetimes when occupied, and the system may spontaneously leave the metastable state at any
time.

A typical lasing medium that involves metastable states is a combination of Helium and Neon:

Don’t memorise word-for-word but know this is a way of population inversion to produce
light.

1. First, one of the ground state He atoms is excited into an excited metastable state
using an electrical discharge

2. This He atom will then collide with a Ne atom causing the energy the excited
electron in the He atom gained to be transferred to the Ne atom, meaning one of
its electrons moves into an excited state

3. At this point the external photon causes stimulated emission of the Ne atom, causing
the excited electron to move to a lower energy excited state, where the energy
difference in energy levels corresponds to the energy of the initial incoming photon.

4. This means two photons of the same frequency are produced. The electron will then
de-excite further to the ground state

Other combinations of different elements which contain metastable states can be chosen in order
to change the wavelength of light that the laser produces.

8.2.2 Time Dependent PT

In order to determine the form of the Einstein coefficients we can use time dependent PT. In this
case, much like in the previous chapter, the perturbation arises due to a time varying electric
field. The operator for the electric field (DO NOT MEMORISE), within a cavity, has the form:

Ê(r, t) =
1√
V

∑
k,λ

√
~ω
2ε0

ελ(k)
[
−iÂ+

λ (k)e
−i(k·r−ωt + iÂ−

λ (k)e
i(k·r−ωt)

]
, (8.12)

where

• ελ(k) is the polarization vector (perpendicular to the direction of propagation) of the
electromagnetic radiation that is enclosed in a volume V .
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• Â+
λ (k) and Â−

λ (k) are the creation and annihilation operators for a single photon with
wave vector k and polarization λ which act to increase and decrease the number of photons
in the system:

Â+
λ |Nλ(k)〉 =

√
N(k) + 1 |Nλ(k) + 1〉

Â−
λ |Nλ(k)〉 =

√
N(k) |Nλ(k)− 1〉

The transition rates (Eq. (7.26)) (which are the quantum mechanical analogues of the Einstein
coefficients) are proportional to product of the square of the matrix elements

〈i|V̂ |j〉

connecting the atomic states |i〉 and |j〉 and the density of states ρ(ν) which is the number of
pairs of levels i, j, that have an energy difference between hνij and h(νij + dνij).

8.3 Key Results
You basically just need to know how to make a laser, unfortunately actually building one is
non-examinable so you’ll just have to pretend

Your epic laser

1. A lasing medium in which two of the energy levels, Ei and Ej , are separated by an
energy gap (Ei − Ej = +hν and hν > kT ). The atoms in the upper level can make
transitions that are stimulated by the presence of photons of the correct frequency.

2. Some mechanism for repopulating the upper level for repeated operation.
3. A cavity in which the stimulated photons and the lasing medium can be contained.

The cavity contains the lasing medium and is connected to the pumping mechanism
required to generate the population inversion. Mirrors keep the photons inside
the cavity to build up the number of photons that stimulate emission but allow a
proportion of the light to escape as the laser beam.

You will also need to know what populaton inversion is, how to create population inversion and
the 3 modes of interaction: stimulated absorption/emission and spontaneous emission.
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Chapter 9

Two level systems

9.1 Introduction
The rest of this module studies two-level systems - quantum systems whose entire space of
states can be determined by a unique combination of two orthonormal basis states. From a
more mathematical point of view, we say that the space of states H (a Hilbert space because
it is QM) has a span given by 2 orthonormal states (denote them by, |0〉 , |1〉) such that H =
span(|0〉 , |1〉).

Examples of two-level systems (which we will study later) include the ammonia molecule and
qubits - the quantum information analogue to the classical bit.

9.2 Matrix mechanics
If you didn’t enjoy rushing Dirac notation last year, you’ll hate it this year because we do truly
invoke some hidden functional analysis (which you don’t need to know unless you take MA3G7)
to make them maths, and thus physics, make sense.

9.2.1 A review of Hilbert spaces and Dirac Notation

Definition 9.2.1. A Hilbert space is a vector space with the following properties:

• Completeness

• Inner product (·, ·) : H ×H → C

Vector spaces have to be over some scalar field, namely the complex numbers C. For physicists,
this is because wavefunctions can be complex (e.g. complex coefficients or complex phase factors
eiφ). It is non-examinable, but important as to why we do this because everyone has questions
about this. We will come back to the definition in a bit, let’s define everyone’s favourite thing:
notation.

Dirac notation

Traditionally, a vector in a vector space is denoted with a boldfont, e.g. E for the electric field.
In QM, we use Dirac notation, where the ket |ψ〉 is the vector of Hilbert space and physically
represents the state of some system. It is important to note that anything can go inside the
brakets as long as it describes a state.

Its dual is the bra: 〈f |. Here, f : H → C is the linear functional acting on the space H.
Therefore doing 〈f |ψ〉 gives you a complex number - f acts on the vector |ψ〉. Using something
called the Riesz representation theorem (non-examinable!) means that our inner product of 2
states (f, g) = (|f〉 , |g〉) = 〈f | (|g〉) is exactly 〈f |g〉.
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Definition 9.2.2. The conjugate transpose of a state |ψ〉 is denoted |ψ〉† = 〈ψ|

It is important to note that this is well-defined on finite-dimensional spaces (with a corresponding
definition for infinite-dimensional Hilbert spaces). So that is what physicists take for granted -
luckily in this part of the module we only have a two-dimensional vector space.

We now return to our definition of Hilbert spaces.

Why completeness? Consider the general form of a wavefunction

|ψ(t)〉 = eiĤt/~ |ψ(0)〉 (9.1)

where Ĥ is the Hamiltonian (which produces the energy). Now, Ĥ is an operator, so eĤ is an
operator acting on |ψ(0)〉. Using spectral theory (non-examinable), we define the exponential
of an operator Ĥ with a ”Taylor expansion”

eĤ =

∞∑
α=1

Ĥα

α!
(9.2)

In order for this to converge (using said spectral theory and Riesz representation) is the same
as requiring completeness. Moreover, a physical observable may not have a complete set of
eigenstates, which would basically break down the entirety of QM. So, let’s not do that and
continue soldiering (suffering) onwards!

9.2.2 Outer products and the Projection operator

Why an inner product? If you didn’t realise, inner products allow us to extract physical
information about our system, by letting us find states which can describe the entirety of the
space of states. Let’s see this in terms of vectors in R2 which we will denote by boldface: x1,y1.
Now, R2 has 2 different bases:

x1 =

(
1
0

)
y1 =

(
0
1

)
(9.3)

x2 =

(
− 1√

2
1√
2

)
y2 =

(
1√
2
1√
2

)
(9.4)

You can construct any vector in R2 by a linear combination of either x1 and y1 or x2 and y2,
i.e. given v ∈ R2:

v = αxx1 + αyy1 = βxx2 + βyy2 (9.5)

for some αx,y, βx,y ∈ R. The question is how do we convert between the two bases? Notice what
happens if we decide to draw out these bases, see Figure 9.1. In order to write v in terms of
one of the bases, we must ‘project’ it onto each of x1,y1 and x2,y2. A projection here is just
the geometrical meaning of the dot product! So for any orthonormal basis {ei}∞i=1

v =
∑
i

(ei · v)ei (9.6)

However the dot product is an inner product over R but we want one over C for our Hilbert
space. Moreover we are operating on the vector ei. Associating ei → |i〉 ,v → |ψ〉 this beautiful
equation becomes

|ψ〉 =
∑
i

(〈i|ψ〉) |i〉 =
∑
i

|i〉 (〈i|ψ〉) =
∑
i

(|i〉〈i|) |ψ〉 =
∑
i

ci |ψ〉 (9.7)
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Figure 9.1: 2 bases of R2 along side the vector v.The green, dashed lines denote the basis x2,y2

and the orange, solid lines denote the basis x1,x2

Definition 9.2.3. The outer product of 2 states |i〉 , |j〉 is denoted |i〉〈j|. It produces a
matrix and is thus a linear operator on a vector.

Note, if kets are column vectors, then bras are row vectors, so the outer product written in this
way does produce a matrix. The question to ask yourself is now: what does an outer product
mean geometrically? Well we saw earlier what an outer product does to a vector. The dot
product projects the amount of v in the direction of ei. This then multiplies ei, so in effect the
outer product gives us a vector whose magnitude is how much of v is in the direction of ei. This
is exactly the same notion in the Dirac notation! If we write our wavefunction |Ψ〉 in terms of
orthonormal wavefunctions |ψi〉

|ψ〉 =
∑
i

ci |i〉 (9.8)

then ci gives us the amplitude of state |i〉, i.e. how much of state |i〉 contributes to |ψ〉. We
therefore define

Definition 9.2.4. The projection operator is the outer product |i〉〈i|, i.e. it projects
the component of |ψ〉 onto |i〉

We now move onto some important properties of the projection . We now solidify our notation
and say |ψi〉 = |i〉. Recall

Theorem 9.2.1. The eigenfunctions of a Hermitian operator form a complete basis set. Further-
more, if the eigenfunctions are not normalised, we can do so to form an complete orthornormal
basis.

This gives us the following proposition

Proposition 9.2.1. The sum of the projection operator over an orthonormal basis gives the
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identity matrix (operator) I ∑
i

|i〉〈i| = I (9.9)

Proof. This is a bit hard to see. Remember that |i〉 is an orthonormal state to all other states
|j〉 when j 6= i. Since each state is orthonormal, we can ‘represent’1 each state |i〉 by

|1〉 =

1
0
...

 , |2〉 =

0
1
...

 (9.10)

Then our sum becomes∑
i

|i〉〈i| = |1〉〈1|+ |2〉〈2|+ . . . (9.11)

=


1 0 . . .
0 0 . . .
0 0 . . .
...

... . . .
. . .

+


0 0 . . .
0 1 . . .
0 0 . . .
...

... . . .
. . .

+ . . . (9.12)

=


1 0 . . . 0
0 1 . . . 0
0 0 1
...

... . . .
. . .

 = I (9.13)

Definition 9.2.5. Let Q̂ be an operator2 on a Hilbert space H. Then it is idempotent if and
only if Q̂2 = Q̂Q̂ = Q̂

Why is this useful? It gives us another property of the projection operator, namely

Lemma 9.2.1. The projection operator is idempotent

Proof. We apply |i〉〈i| twice:

((|i〉〈i|))2 = (|i〉〈i|)(|i〉〈i|) = |i〉 〈i|i〉 〈i| = |i〉 (〈i|i〉) 〈i| = |i〉〈i| (9.14)

where we used the orthonormality of states which gives that 〈i|i〉 = 1.

Generally speaking, if we have states |i〉 , |j〉 then applying the projection operator for state j
onto i satisfies

|j〉 〈j|i〉 〈i| = δij |j〉〈i| (9.15)

Geometrically, this says once you have projected some arbitrary state in one basis state, you
can’t re-project it onto a different basis state. Instead, if you re-project onto the same basis
state, you’ll just return the original projection.

Physically, this allows us to use the projection operator to find energy eigenvalues. consider
an arbitrary state which is a superposition of basis states

|ψ〉 =
∑
k

ck |k〉 (9.16)

1Note: this is not the same as ‘=’ although we will write an equals sign. What we are saying is that having
an orthonormal basis set is like having the orthonormal basis of Cn. More specifically, we have an isomorphism
of Hilbert spaces.

2Necessarily this operator should be bounded, but in physics they generally are so we will shove this under
the rug.
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Then the probability of the state |ψ〉 collapsing into the ith state can be calculated as

|〈i|ψ〉|2 =

∣∣∣∣∣∑
k

ck 〈i|k〉

∣∣∣∣∣
2

= δikc
2
i 〈i|k〉 (9.17)

which gives us the corresponding energy Ei. In particular, making a measurement changes the
system so that it arrives in state |i〉. Therefore determining the energy is given by the expectation
value of the Hamiltonian:

〈ψ|Ĥ|ψ〉 = 〈ψ|Ek|ψ〉 (9.18)

=

〈∑
k

|k〉 〈k|ψ〉

∣∣∣∣∣Ek

∣∣∣∣∣ψ
〉

=
∑
k

〈ψ|k〉Ek 〈k|ψ〉

=
∑
k

|〈k|ψ〉|2Ek

If you are unsure how we got from the 2nd line to the third line, remember that the left side of
the braket must be replaced with the Hermitian conjugate (conjugate transpose) before you
can remove the braket notation entirely, so 〈k|ψ〉 = (〈ψ|k〉)† and |k〉† = 〈k|. Now focus on the
third line. If we remove the ψ from either side we get

Ĥ =
∑
k

Ek |k〉〈k| (9.19)

This is true for any Hermitian operator where the scalar coefficient is just its eigenvalues
instead of energies specifically (note, the energies are themselves eigenvalues of the Hamiltonian,
which is hermitian!).3

9.2.3 Matrix representations

Notice our expression for the Hamiltonian, Eq. (9.19), the terms in the sums can be represented
as matrices like we discussed earlier in this chapter. This is because of the outer product. We
can generalise this.

Suppose we have a finite orthonormal basis of size n, i.e. we have n basis states. Let Ô be
an operator. We can represent Ô as a matrix, which then will act on vectors (which represent
states). Then

Ô =
∑
j

∑
i

|j〉 〈j|Ô|i〉 〈i| (9.20)

This takes advantage of Proposition 9.2.1 by applying the projection operator and Ô to both
sides.

Note then that the term 〈j|Ô|i〉 is a matrix element since it is sandwiched between the outer
product |j〉〈i|. This corresponds to the jith matrix element Ôji so

Ô
.
=

 〈1|Ô|1〉 〈1|Ô|2〉 . . .

〈2|Ô|1〉 〈2|Ô|2〉 . . .
...

... . . .

 (9.21)

where we introduce the notation .
= to mean ‘is represented by’ rather than confusingly write it

as an equals sign.
3For those taking MA3G7, this is an application of the Hilbert-Schmidt theorem.
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9.2.4 Outer product as a matrix representation

Given two arbitrary states |α〉 and |β〉 in a finite-dimensional space with basis kets |i〉, the states
can be represented as column vectors by expanding the state across the basis kets,

|α〉 .=


〈i | α〉
〈j | α〉
〈k | α〉

...

 |β〉 .=


〈i | β〉
〈j | β〉
〈k | β〉

...


The outer product |β〉〈α| is given by

|β〉〈α| .=

 〈i | β〉〈i | α〉∗ 〈i | β〉〈j | α〉∗ . . .
〈j | β〉〈i | α〉∗ 〈j | β〉〈j | α〉∗ . . .

...
... . . .


Don’t forget to take the conjugate transpose when converting a bra to a ket and vice versa!

9.2.5 Change of bases and similarity transforms

We’ve talked briefly about how to construct an arbitrary state in a given basis - but what about
converting between bases? From linear algebra, you may recall that given two (orthonormal)
finite bases {ei} and {fi}, we transform between them with a change-of-basis matrix. Matrices
are linear operators and so we will need to apply a unitary operator to a basis in order to change
between bases.

Definition 9.2.6. A matrix is unitary if its Hermitian adjoint is also its inverse:

U †U = UU † = I (9.22)

Unitary operators (and hence unitary matrices) preserve the inner product i.e., they preserve the
length and angles between two vectors. Unitary operators have an important place in quantum
mechanics, for example in the time evolution operator e−iĤt/~ we saw earlier. In quantum
computing, quantum logic gates are unitary operators.

|fi〉 = Û |ej〉 |ei〉 = Û † |fj〉

As we discussed with the projection operator, we have

Û =
∑
i

|fi〉〈ei| (9.23)

with the reverse transform
Û † =

∑
i

|ei〉〈fi| (9.24)

We can compute the individual elements in the basis {e} by

U
{e}
jk = 〈ej |Û |fk〉 (9.25)

=

〈
ej

∣∣∣∣∣∑
l

|fl〉〈el|

∣∣∣∣∣ ek
〉

(9.26)

=

〈
ej

∣∣∣∣∣∑
l

δlkfl

〉
(9.27)

= 〈ej |fk〉 (9.28)

48



The representation of the operator Û is therefore identical in any arbitrary basis. The Hermitian
conjugate is also equal in both bases,

Û
{e},†
jk = Û

{f},†
jk = 〈fj |ek〉 (9.29)

so since they are equal we will drop the subscripts jk to clean up the notation more, unless we
are referring to specific elements.

We can now explicitly write out the transform in terms of the elements of the matrix, again
employing the projection operator to insert the identity:

|fk〉 =
∑
j

|ej〉 |ej〉〈fk| =
∑
j

Ujk |ej〉 (9.30)

|ek〉 =
∑
j

|fj〉 |fj〉〈ek| =
∑
j

U †
jk |fj〉 (9.31)

Note that the components of a state written in the basis {e} are transformed differently to the
basis vectors. For a state

Finally, we look at how the matrix representation of an operator will behave under a basis
change. Note that while the matrix representation of an operator (or a state) will change under
a basis change, the operators and states themselves do not.

For a Hermitian operator Ô, its matrix elements in the {b} basis are given by

Ob
jk =

〈
bj

∣∣∣ Ô ∣∣∣ bk〉
=

〈
bj

∣∣∣∣∣
(∑

l

|al〉 〈al|

)
Ô

(∑
m

|am〉 〈am|

)∣∣∣∣∣ bk
〉

=
∑
l,m

〈bj | al〉
〈
al|Ô|am

〉
〈am | bk〉

=
∑
l,m

U †
jlO

a
lmUmk.

(9.32)

We can simplify this to be

Similarity transformation

This is how you convert an operator between different bases {a} ↔ {b}

Ôb = Û †ÔÛ Ôb = Û ÔÛ † (9.33)

This is known as a similarity transformation, and is a general approach to changing
the basis of the matrix representation of a Hermitian operator, provided that when written
in the form Û = exp

(
ζ̂
)

(where ζ̂ is another (Hermitian) operator) and ζ̂ satisfies the
commutation relation [ζ̂, Ĥ] = 0.

In the exam, you will not be expected to recognise or construct these transforms for non-
commuting operators without additional guidance. You will be expected to be able to apply
operator transforms and convert between bases, see the examples in this chapter.

9.3 Ammonia Molecule
The ammonia molecule NH3 has 2 classically stable configurations

• One with the nitrogen above the hydrogen ions with its lone pair pointing up. Denote this
as |1〉.
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• One with the nitrogen below the hydrogen ions with its lone pair pointing down. Denote
this as |2〉.

We will use these as 2 distinct states and model it using two-level theory, ignoring other degrees
of freedom of the molecule e.g., electronic, nuclear, vibrational, and rotational excitations. We
will also ignore any relativistic effects. We consider the two configurations in terms of some
coordinate and define an energy (Hamiltonian) in terms of this coordinate.

As this is a very basic model, we can attribute any experimental deviations to the fact that our
model is incomplete.

For the ammonia to flip between the 2 states, there has to be some potential barrier. We will
consider 2 cases: the infinite and finite potential barriers.

9.3.1 Infinite potential barrier

We would be considering two configurations which are identical by symmetry but disconnected
from one another, so there is no coupling terms like |1〉〈2| in our Hamiltonian. Therefore, the
energies of each state will be the same (denote this by ε0) and our Hamiltonian is

Ĥ = |1〉〈1| ε0 + |2〉〈2| ε0 (9.34)

Now we can use our knowledge from matrix representations, noting that off-diagonal terms are
0 due to the lack of coupling and

Ĥ
.
=

[
ε0 0
0 ε0

]
|1〉 =

[
1
0

]
|2〉 =

[
0
1

]
(9.35)

Suppose we kick the ammonia molecule to start purely in one of |1〉 or |2〉. Then the general
evolution will be something like exp(iε0t/~) |1〉 - a stationary state. We would never oscillate
into |2〉. Same thing if we started in |2〉 instead.

9.3.2 Finite potential barrier

For a finite potential barrier, e.g. 0.25eV, the expected frequency of inversion of 1.3GHz.
However due to quantum tunnelling it is 24GHz. This suggests there is coupling between the
2 states, so any off-diagonal terms may be non-zero! This means that 〈1|Ĥ|2〉 = Ĥ12 = Ĥ∗

21 =
−V, V > 0. Note that the minus sign is a convention. Then

Ĥ0 = |1〉〈1| ε0 + |2〉〈2| ε0 − V |1〉〈2| − V ∗ |2〉〈1| (9.36)

so the Hamiltonian is represented (using Eq. (9.21)) by

Ĥ
.
=

[
ε0 −V

−V ∗ ε0

]
(9.37)

The eigenstates of this system are linear combinations of |1〉 and |2〉. Before moving on, we
recall a theorem from linear algebra

Theorem 9.3.1. Hermitian operators have real eigenvalues

Therefore we will assume V = V ∗ is real. We get 2 pairs of eigenvalues-eigenvectors. They are

εg = ε0 − V |g〉 = |1〉+ |2〉√
2

(9.38)

εe = ε0 + V |e〉 = |1〉 − |2〉√
2

(9.39)
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The coupling between the states results in the lifting of their degeneracy (because both states
had the same energy ε0). ‘e’ stands for excited and ‘g’ stands for ground (because it is the lowest
energy). Again, the fact the signs may appear a bit backwards is because of our convention to
choose −V . Also note that the new states |g〉 , |e〉 form an orthonormal basis.

The 2 states |g〉 , |e〉 represent symmetric and anti-symmetric combinations of |1〉 , |2〉.

We now want to study time evolution. Denote the initial state at t = 0, by |ψ(0)〉. Then at any
time t, the state is

|ψ(t)〉 = cg(t) |g〉+ ce |e〉 (9.40)

Substitute this into the Schrödinger equation (which we can because we are ignoring relativity),
which remember is given by

i~
d|ψ(t)〉

dt
= Ĥ |ψ(t)〉 (9.41)

Therefore
i~
dcg
dt

|g〉 ~dce
dt

|e〉 = Ĥ|ψ(t)〉 = cgĤ |g〉+ ceĤ |e〉

= cgεg |g〉+ ceεe |e〉
(9.42)

The time-dependent coefficients cg(t), ce(t) are directly

cg(t) = cg(0)e
−iεgt/~ ce(t) = ce(0)e

−iεet/~ (9.43)

As before, if cg(0) = 1 or ce(0) = 1, the system is in an eigenstate of the coupled Hamiltonian
and we recover stationary states of definite energy ε0 ± V .

However, suppose our initial starting state is a superposition of |g〉 , |e〉, e.g. suppose our
initial wavefunction is |ψ(0)〉 = |1〉 = 1√

2
(|g〉 + |e〉), so that cg(0) = ce(0) =

1√
2
. Then we have

sinusoidal oscillation since

|ψ(t)〉 = exp

(
−iε0t
~

)(
cos

(
V t

~

)
|1〉+ i sin

(
V t

~

)
|2〉
)

(9.44)

which you can derive by substituting in for |g〉 , |e〉 , εg, εe and using a particularly famous relation
between complex exponentials and trig functions.

Therefore, we have sinusoidal oscillation between the states |1〉 , |2〉 with angular frequency
ω = V/~. The probabilities of finding the nitrogen lone pair pointing up or down is

P1(t) = |〈1|ψ〉|2 = cos2
(
V t

~

)
(9.45)

P2(t) = |〈2|ψ〉|2 = sin2
(
V t

~

)
(9.46)

We have derived the time-dependence using only pure quantum mechanics - this analysis can
be generalised to any two-level system.

9.4 General Undriven 2-level system

We will again choose |1〉 , |2〉 to be our orthonormal basis. Therefore any state can be represented
as a linear superposition

|ψ〉 = α |1〉+ β |2〉 (9.47)

Again we choose to represent the kets by some orthonormal vectors and choose

|1〉 =
[
1
0

]
|2〉 =

[
0
1

]
(9.48)
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once again, so that we can write our arbitrary state as a vector

|ψ〉 =
[
α
β

]
(9.49)

Since we have a two-level system, our Hamiltonian (and the rest of our operators) can be
represented as a 2× 2 matrix

Ĥ =

[
H11 H12

H21 H22

]
(9.50)

and therefore its expectation value reduces to matrix multiplication

〈ψ|Ĥ|ψ〉 =
[
α β

] [H11 H12

H21 H22

] [
α
β

]
(9.51)

The off-diagonal terms H12,H21 are referred to as mixing matrix elements or coupling
terms.

Lemma 9.4.1. If we set H21 = H12 = 0 then the basis states we have chosen |1〉 , |2〉 and
eigenstates of the Hamiltonian coincide

Proof. (
H11 0
0 H22

)(
1
0

)
= H11

(
1
0

)
= H11|1〉 (= ε1|1〉)(

H11 0
0 H22

)(
0
1

)
= H22

(
0
1

)
= H22|2〉 (= ε2|2〉) .

(9.52)

Hence we see that |1〉 , |2〉 are indeed eigenstates

Proposition 9.4.1. The Hamiltonian is invariant under a global phase change.

This means if we were to shift all states by the same phase exp(iφ) then the system would remain
exactly the same. Alternatively, if we did something like Ĥ → Ĥ+Iε0 (i.e. shift the Hamiltonian
by the energy), then this would also leave the system unchanged. All it does is offset the values.
However, this is not true for phase differences between states in superposition, also called
relative phase.

Since global change is invariant, it will be useful to rewrite the Hamiltonian in a different way
which shifts the Hamiltonian to the mean energy (ε1 + ε2)/2. We first note the most general
Hamiltonian has complex entries

Ĥ
.
=

[
ξ − δ ∆eiφ

−∆e−iφ ξ + δ

]
(9.53)

In order to go from (ε1 + ε2)/2 → ε1 we must add the energy difference (ε1 − ε2)/2 which we
will set to −ε. Similarly to get to ε2 we must subtract the energy difference which is ε. Our
Hamiltonian is therefore

Ĥ
.
=

[
−ε ∆eiφ

−∆e−iφ ε

]
(9.54)

∆ in this case is a coupling term.

We therefore consider the Schrödinger equation again by substituting in |ψ〉 and Ĥ so

i~
d

dt

[
α
β

]
=

[
−ε −∆exp(iφ)

−∆exp(−iφ) ε

] [
α
β

]
(9.55)
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To solve it, we attempt to use something like Eqs. (9.42). To do that, we need an orthonormal
basis. We can do this by solving the secular/characteristic equation det

(
Ĥ − λI

)
= 0:∣∣∣∣ −ε− λ −∆exp(iφ)

−∆exp(−iφ) ε− λ

∣∣∣∣ = 0 =⇒ λ2 − ε2 −∆2 = 0 (9.56)

We get 2 eigenvalues

λ± = ±η η =
√
ε2 +∆2 (9.57)

We denote the corresponding eigenvectors by |−〉 =

[
α−
β−

]
, |+〉 =

[
α+

β+

]
. To find them, we

substitute back into the secular equation (like how you would find eigenvectors normally) and
we get

α− =
∆

η − ε
eiφβ− α+ = − ∆

η + ε
eiφβ+ (9.58)

So we have 2 equations but 4 unknowns - that’s not good. However, we can directly deduce 2
other equations from a physical principle: wavefunctions should be normalised. Remember the
alphas and beta correspond to the superposition in Eq. (9.47). Therefore we require

|α±|2 + |β±|2 = 1 (9.59)

(1 equation for each sign) to satisfy the normalisation condition. So now we have a consistent
system of equations. You can solve by substituting the alphas into Eq (9.59). We get

|−〉 =
(
α−
β−

)
=

(
cos θ

2

e−iφ sin θ
2

)
|+〉 =

(
α+

β+

)
=

(
− sin θ

2

e−iφ cos θ
2

)
(9.60)

with

sin θ =
∆

η
cos θ =

ε

η
tan θ =

∆

ε
(9.61)

Definition 9.4.1. The angle θ is called the mixing angle which describes the relationship
between the uncoupled basis states and those states of the coupled Hamiltonian in terms of ε,∆.

We have 2 regimes now

• Weak coupling: ε � ∆, θ small. The energy separation between the bare (uncoupled)
states dominates over the coupling rates between the two states. In this case, the eigenbasis
of the coupled Hamiltonian approaches the bare basis states.

• Strong coupling: ε � ∆. Eigenbasis from coupled Hamiltonian deviates further from
the uncoupled states. Maximal mixing occurs in the limit ε → 0, tan θ → ∞, θ → π/2.
Then the coupled states are equal combinations of the uncoupled states.

Remark. In the ammonia example, we found that our states |g〉 , |e〉 were equal combinations of
|1〉 , |2〉, so it was an example of strong coupling.

Let us now drop the phase factor e−iφ temporarily. Recall from linear algebra that to transform
between 2 orthonormal bases, you have a change-of-basis matrix U . In our case, U satisfies[

|−〉
|+〉

]
= U

[
|1〉
|2〉

]
=

[
cos θ/2 sin θ/2
− sin θ/2 cos θ/2

] [
|1〉
|2〉

]
(9.62)

We can also do the inverse:[
|1〉
|2〉

]
= U−1

[
|−〉
|+〉

]
=

[
cos θ/2 sin θ/2
− sin θ/2 cos θ/2

]−1 [|−〉
|+〉

]
(9.63)

Both matrices are a type of unitary operator as in Definition 9.2.6. This reinforces the param-
eterisation of the basis change as a rotation from the uncoupled basis set to the coupled basis
set.
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9.5 General Driven 2-level system
We now consider a system where we can control the transitions between states. Consider a laser
interacting with an atomic transition. We can split the Hamiltonian for this total system into
a time-independent Hamiltonian Ĥ0 (the atomic transition) plus a time-dependent perturbation
V̂ (t) (the laser). You will need to know Time-Dependent Perturbation theory to understand the
rest of this section.

We write Ĥ = Ĥ0+ V̂ (t). Now, ignore the potential for now. We model the atom much like our
ammonia molecule with a ground state and excited state well-separated in energy so

Ĥ0 =
−ε
2

|g〉〈g|+ ε

2
|e〉〈e| (9.64)

Since |g〉 , |e〉 form a complete orthonormal basis we have the matrix representation be

Ĥ0
.
=

[
−ε/2 0
0 ε/2

]
(9.65)

where the two states |g〉 and |e〉 are (energy) eigenstates of this Hamiltonian and are characterized
by the transition frequency ω0 = ε/~

9.5.1 Applying a perturbation

We now excite the atom with an oscillating electric field V̂ (t) = V̂0 cosωt with V̂0 = −d · E0

where d is the dipole moment and E0 the electric field polarisation of the laser field. In this
section, we make use of the dipole approximation, where wavelength of radiation is much
larger than atom size so we can treat the atom as a point. This is valid for UV light and longer.

First, we show an important state of the dipole moment

Lemma 9.5.1. The dipole moment is odd under parity exchange, i.e. d(x) = −d(−x)

This should be clear because reversing the direction of the dipole moment is the same as mirroring
the entire space it is in. A dipole pointing ‘backwards’ is the opposite of a dipole pointing
‘forwards’.

Consequently, we need to find the matrix representing V̂ . We use our formalism in Eq. (9.21)
setting Ô = V̂ (t). Observe that the expectation values 〈e|V̂ |e〉 = 〈g|V̂ |g〉 = 0 because the
integral of an odd function over all space is 0 (use the integral definition of an expectation value
if you aren’t convinced). Therefore the only terms that remain are the off-diagonal terms. The
full Hamiltonian is then

Ĥ =

[
−ε/2 0
0 ε/2

]
+

[
0 V0 cosωt

V ∗
0 cosωt 0

]
(9.66)

with V0 = 〈e|V̂0|g〉 = 〈g|V̂ ∗
0 |e〉

∗

9.5.2 Rotating wave approximation

We now require the Schrödinger equation. Recall any 2 level state can be written as |ψ(t)〉 =
cg(t) |g〉+ ce(t) |e〉

i~
d

dt

[
cg(t)
ce(t)

]
=

[
−ε/2 V0 cosωt

V ∗
0 cosωt exp(−iφ) ε/2

] [
cg(t)
ce(t)

]
(9.67)

Now, in the final solution, we will have 2 contributions to the time-dependence: the phase factor
e−iĤ0t/~ from the atom and unperturbed Hamiltonian, as well as time-dependence from the
perturbation itself. The traditional method to solving the TDSE in this case is to eliminate the
exponential phase factors by a transform into the so-called interaction picture.
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Therefore for a state |ψ〉:

In the Schrödinger picture

|ψ(t)〉 =
∑
n

cn(t) |n〉 (9.68)

so cn is the amplitude in the Schrödinger picture.
In the Interaction picture

|ψ(t)〉 =
∑
n

an(t)e
−iĤ0t/~ |n〉 =

∑
n

an(t)e
−iEnt/~ |n〉 (9.69)

So an is the amplitude in the interaction picture.

Remark. If V̂ = 0 then an(t) becomes constant as Ĥ = Ĥ0 so each state evolves at its char-
acteristic frequency En/~. By rewriting the amplitudes in the interaction picture, it is clear
an(t) 6= 0 ⇐⇒ V̂ 6= 0, i.e. an interaction has to exist for this to make sense.

Writing our amplitudes in the interaction picture we get

cg = ag(t)e
−iĤ0t/~ |g〉 = ag(t)e

iεt/2~ |g〉 (9.70)

ce = ae(t)e
−iĤ0t/~ |e〉 = ae(t)e

−iεt/2~ |e〉 (9.71)

(identical to Eq. (7.10)) therefore to convert between the 2 amplitudes we use a matrix[
cg(t)
ce(t)

]
=

[
exp(iεt/2~) 0

0 exp(−iεt/2~)

] [
ag(t)
ae(t)

]
(9.72)

A lot of things are gonna happen

1. Set ω0 = ε/~ = (Eg − Ee)/~

2. Write V0 cosωt = V0
2 (e−iωt + e−iωt)

3. Substitute Eq. (9.72) into Eq. (9.67)

This gives us the definitely long matrix equation

i~
d

dt

[
ag(t)e

iω0t/2

ae(t)e
−iω0t/2

]
=

[
−~ω0/2

V0
2

(
e−iωt + e−iωt

)
V ∗
0
2

(
e−iωt + e−iωt

)
~ω0/2

] [
ag(t)e

iω0t/2

ae(t)e
−iω0t/2

]
(9.73)

We can diagonalise the matrix so that the leading diagonal is just full of zeros. This is a fairly
long process which will be detailed shortly. In summary, it is product rule, multiplication of
exponentials and collecting terms. You can skip to Eq. (9.75).

Product rule on the LHS of the above yields

i~
[
d

dt

[
ag(t)
ae(t)

](
exp (iω0t/2)
exp (−iω0t/2)

)
+
iω0

2

(
ag(t) exp (iω0t/2)

−ae(t) exp (−iω0t/2)

)]
Explicitly multiplying out the exponentials on the RHS yields[

−~ω0
2 exp (iω0t/2)

V̂0
2 exp (−iω0t/2) [exp(iωt) + exp(−iωt)]

V̂ ∗
0
2 [exp(iωt) + exp(−iωt)] exp (iω0t/2)

~ω0
2 exp (−iω0t/2)

]
(9.74)

Considering the top row only, we now have

i~dag(t)
dt exp (iω0t/2)− ~ω0

2 ag(t) exp (iω0t/2) =

−~ω0
2 ag(t) exp (iω0t/2) +

V̂0
2 cos(ωt) exp (−iω0t/2) ae(t)
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The second and third terms cancel. Dividing through by exp (iω0t/2) yields

i~
dag(t)

dt
= +

V̂0
2
[exp(iωt) + exp(−iωt)] exp (−iω0t) ae(t)

Considering the bottom row only, we have

i~dae(t)
dt exp (−iω0t/2) +

~ω0
2 ae(t) exp (−iω0t/2) =

V̂ ∗
0
2 cos(ωt)ag(t) exp (iω0t/2) +

~ω0
2 exp (−iω0t/2) ae(t)

The second and third terms cancel. Dividing through by exp (−iω0t/2) yields

i~
dae(t)

dt
= +

V̂ ∗
0

2
[exp(iωt) + exp(−iωt)] exp (iω0t) ag(t)

We arrive at the system of equations

i~
d

dt

[
ag(t)
ae(t)

]
=


0 V0

2 [exp (−i (ω + ω0) t)
+ exp (i (ω − ω0) t)]

V ∗
0
2 [exp (i (ω + ω0) t) 0
+ exp (−i (ω − ω0) t)]

[ag(t)ae(t)

]
(9.75)

Taking V0 ∈ R =⇒ V0 = V ∗
o assume V0 � ω0, i.e. interaction is weak compared to transition

frequency, and we are interested on the timescales of response which scale ∼ 1/V0. On these
timescales we may neglect those terms which oscillate at frequency ω+ω0, since they will average
to zero: dropping these terms constitutes the Rotating Wave Approximation.

Writing ∆ = ω − ω0 and applying the rotating wave approximation gives

i~
d

dt

[
ag(t)
ae(t)

]
=
V0
2

[
0 exp (−i∆t)

exp (i∆t) 0

] [
ag(t)
ae(t)

]
(9.76)

9.5.3 Dynamics of a driven two-level system

On-resonance driving

This is when the driving frequency matches the transition frequency, i.e. ∆ = 0. Then our
system of equations greatly simplifies to

i~
d

dt

[
ag(t)
ae(t)

]
=
V0
2

[
0 1
1 0

] [
ag(t)
ae(t)

]
(9.77)

Dividing by i~ on both sides we now have 2 coupled ODEs. Using theory from ODEs, we must
first solve for the eigenvectors and then form the general solution. Set V0/~ = Ω/2. Then the
eigenvalues are obtained from the secular equation which is

det

[
−λ − iΩ

4

− iΩ
4 −λ

]
= 0 =⇒ λ± = ∓Ω/2 (9.78)

the normalised eigenvectors are then

c+ =
1√
2

[
1
1

]
c− =

1√
2

[
1
−1

]
(9.79)

The general solution is therefore

|φ(t)〉 = c00e
−iΩt/2

[
1
1

]
+ c01e

iΩt/2

[
1
−1

]
(9.80)
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with c00, c01 constants determined from initial conditions (we absorb 1/
√
2 into those constants).

Assuming the initial state is the ground state |g〉 with c00 = c01 = 1/2 then

|φ(t)〉 = 1

2

[
e−iΩt/2 + eiΩt/2

e−iΩt/2 − eiΩt/2

]
=

[
cos(Ωt/2)

−i sin(Ωt/2)

]
(9.81)

However we are still in the interaction picture, we solved everything in terms of the amplitudes
a. We now need to return to the Schrödinger picture (the lab frame if you will) by multiplying
|φ〉 by the matrix in Eq. (9.72) and we get

|ψ(t)〉 =
[

eiεt/2~ cos(Ωt/2)

−ie−iεt/2~ sin(Ωt/2)

]
(9.82)

The system therefore oscillates between |g〉 and |e〉 at a frequency Ω which is proportional to
the amplitude of the laser’s electric field (not its intensity). By turning the laser irradiation on
and off, we can choose particular linear combinations of the two states involved. The relative
populations of |g〉 and |e〉 are given by

Pg(t)− Pe(t) = cos2(Ωt/2)− sin2(Ωt/2) = cos(Ωt) (9.83)

Definition 9.5.1. A pulse of length t = π/Ω which transfers the ground state population into
the excited state (i.e., population inversion), is called a π-pulse.

Therefore a π pulse will transform the population |g〉 ↔ |e〉. If we however have a pulse exactly
half as long, so t = π/(2Ω) then the wavefunction lies exactly halfway between |g〉 , |e〉, which
means a coherent superposition of |g〉 , |e〉 and∣∣∣ψ (t = π

2Ω

)〉
=

|g〉 − i |e〉√
2

(9.84)

General case

We now assume ∆ 6= 0. This is off-resonance driving. We take our linear ODEs in Eq. (9.77)
and choose to eliminate ag(t), i.e. we rearrange one of the ODEs and sub it into the other:

d2ae(t)

dt2
− i∆

dae(t)

dt
+

|V0|2

4~2
ae(t) = 0 (9.85)

We now have a second-order linear ODE purely in terms of ae(t) and known constants which
suspiciously looks like the ODE for a damped harmonic oscillator - in fact it is! We can therefore
skip straight to the general solution (if it was necessary you would be given this in the exam
because the timings are too short) which is

ae(t) = ei∆t/2 (A cos(ΩRt) +B sin(ΩRt)) (9.86)

where we define the Rabi frequency as

ΩR =
1

2

√
∆2 +

V 2
0

~2
(9.87)

Using the initial condition Pe(0) = 0, Pg(0) = 1 - which is the initial condition of starting entirely
at the ground state |g〉 the probability of measuring the atom in its ground and excited states
are

Pe(t) = |ae(t)|2 =
V 2
0

V 2
0 +∆2~2

sin2 (ΩRt) (9.88)

Pg(t) = 1− Pe(t). (9.89)
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Figure 9.2: Probability of finding the system in state |e〉 for different ∆ as a function of time
(left) and different detunings at fixed time (right) for V0 = ~ = 1

As in the ∆ = 0 (on resonance) case, the amplitude oscillates between |g〉 and |e〉 at a frequency
related to the amplitude of the driving field. However, the (Rabi) frequency of oscillation and
the peak inversion probability are now affected by the detuning ∆, i.e. as ∆ increases, the
resulting oscillations get more out of phase and more frequent. See left of Figure 9.2.

Transfer of population from |g〉 → |e〉 is maximised when ∆ = 0, i.e. when the system is on
resonance, i.e. when the frequency of the input field matches the energy splitting of the two
states). When on-resonance, the population is transferred coherently from |g〉 to |e〉 with a
frequency V0/~ .

Off-resonance, the efficiency of the drive between the two states decreases, see right of Figure 9.2.
Additionally, the frequency of the oscillations increases as the detuning increases.

Comparison to perturbation theory results

Refer to Eq. (7.26) which is the time-dependent perturbation theory calculation for the transition
probability between states n→ p.

P (1)
n→p(τ) =

|Vpn|2

~2
sin2(

ωpnτ
2 )

ω2
pn

.

The probability for |g〉 → |e〉 as we derived is

Pe(t) = |ae(t)|2 =
V 2
0

V 2
0 +∆2~2

sin2

(
1

2
t

√
∆2 +

V 2
0

~2

)
(9.90)

The perturbation theory result can be recovered from the Rabi model in 2 ways

• If V0/~ � ∆.

• Or if the timescale is really small such that we can Taylor expand ΩR to its first term
which is about ΩR ≈ ∆.

For large V0 or small ∆, the perturbation approach is no longer valid.

9.6 Bloch Sphere Visualisation

We study the spin-1/2 particle in a magnetic field. The unit normal in spherical coordinates

n = (nx, ny, nz) = (sin θ cosφ, sin θ sinφ, cos θ) (9.91)

where θ is the angle to the z-axis and φ is the azimuth.
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9.6.1 Spin and Pauli matrices

The Pauli matrices are

σ̂1 = σ̂x =

[
0 1
1 0

]
(9.92)

σ̂2 = σ̂y =

[
0 −i
i 0

]
(9.93)

σ̂3 = σ̂z =

[
1 0
0 −1

]
(9.94)

Remark. These 3 matrices (along with the identity matrix if you really want to) span the space
of observables of the complex two-dimensional Hilbert space.

Some other properties of Pauli matrices are

• σ̂2i = 1

• The commutator [σ̂i, σ̂j ] = 2iεijkσ̂k

• tr(σ̂i) = 0

We can write the spin operator as

S = (Ŝx, Ŝy, Ŝz) =
~
2
σ σ = (σx, σy, σz) (9.95)

(Yes, we have a vector of matrices). The spin in direction of n is calculated by dot product:

Ŝn = n · S = nxŜx + nyŜy + nzŜz =
~
2
n · σ (9.96)

9.6.2 Eigenvectors and Eigenvalues

Lemma 9.6.1. The spin operator in direction n is Hermitian

Lemma 9.6.2. If n is one of the cardinal directions x, y, z, then the eigenvalues are ±~/2. In
fact, the eigenvalues are ±~/2 for any unit vector n

This lemma corresponds to an important physical principle

For a free particle in space, there are no preferred directions

Proof. If you substitute in the Pauli matrices, an explicit matrix representation of Ŝn is

Ŝn =
~
2

[
cos θ e−iφ sinφ
eiφ sin θ − cos θ

]
(9.97)

Finding the eigenvalues is again by way of solving the secular determinant:∣∣∣∣ ~
2 cos θ − λ ~

2 sin θ exp(−iφ)
~
2 sin θ exp(iφ) −~

2 cos θ − λ

∣∣∣∣ = −~2

4

(
cos2 θ + sin2 θ

)
+ λ2 = 0 (9.98)

which proves the lemma

So, we obtain eigenvalues for 2 directions λ± = ±~/2. From now on, we define

Definition 9.6.1. The state |±n〉 as the eigenvectors for λ± in the direction of n.
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By convention, spin states are described in the z basis so |±z〉 := |±〉 so for an arbitrary direction
n we may write

|+n〉 = α+ |+〉+ β+ |−〉 =
[
α+

β+

]
(9.99)

|−n〉 = α− |+〉+ β− |−〉 =
[
α−
β−

]
(9.100)

Therefore we have
~
2

[
cos θ e−iφ sin θ
eiφ sin θ − cos θ

] [
α±
β±

]
= ±~

2

[
α±
β±

]
(9.101)

We only need one of the signs, lets take the +. Multiplying out the first row gives

α+(1− cos θ) = β+e
−iφ sin θ (9.102)

Using the trig identities 1 − cos θ = 2 sin2(θ/2) and sin θ = 2 sin(θ/2) cos(θ/2) we obtain the
coefficients

α+ = cos(θ/2) β+ = eiφ sin(θ/2) (9.103)

which tells us

|+n〉 = cos
θ

2
|+〉+ eiφ sin

θ

2
|−〉 (9.104)

|−n〉 = −eiφ sin θ
2
|+〉+ cos

θ

2
|−〉 (9.105)

Lemma 9.6.3. The eigenvectors |±n〉 are orthogonal

Proof. It is a one-liner:

〈+n | −n〉 = − sin
θ

2
exp(−iφ) cos θ

2
+ cos

θ

2
exp(−iφ) sin θ

2
= 0 (9.106)

Lemma 9.6.4. For any eigenstate |+n〉, then

|+n〉 = |−−n〉 (9.107)

Proof. Begin with the eigenstate |+n〉 which you could say is projected in the ‘forwards’ direction,
i.e. in the direction of n. The eigenvector |+−n〉 is the eigenvector which is projected in the −n
direction. Therefore |−−n〉 is the eigenvector in the n direction which is exactly |+n〉.

Combining these 2 lemmas produces the important principle

Orthogonal spin states do not correspond to orthogonal directions.

9.6.3 The Bloch Sphere

Definition 9.6.2. A qubit is the basic unit of processing in quantum computing and has 2
quantum states.
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No matter how you make a qubit, all of them follow the same maths which we have been
doing. It is important to understand what these states look like in an abstract sense. We can
parameterise a general two-level state in a given orthonormal basis (e.g. |0〉 , |1〉 as is used in
quantum computing) by

|φ〉 = α |0〉+ β |1〉 (9.108)

with α, β ∈ C. Since the coefficients are complex, we need 4 real parameters such that α =
a+ ib, β = c+ id with a, b, c, d ∈ R. However any complex number can be written in exponential
form so we write

|ψ〉 = r0e
iφ0 |0〉+ r1e

iφ1 |1〉 (9.109)

= eiφ0

[
r0 |0〉+ r1e

−i(φ1−φ0) |1〉
]

(9.110)

As before, we see e−iφ0 is a global phase factor multiplying a state, so we can get rid of it
since global phase is unobservable. Consequently we just absorb φ = φ1 − φ0. Similarly, note
r20 + r21 = 1 and we can parameterise by r0 = cos(θ/2) and r1 = sin(θ/2) so

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 (9.111)

What we have effectively done is turn our two-level system into something that can be visualised
like a 3D sphere! We take φ to be the azimuth, θ the angle from the z-axis, and we know that
the norm of |ψ〉 is 1 (because of the normalisation condition on the coefficients), so all our states
lie on the unit sphere! We call this unit sphere the Bloch sphere, shown in Figure 9.3.

Figure 9.3: The Bloch sphere (reproduced from lecture notes)

We see that the 2 basis states are diametrically opposite each other, aligned along the z-axis (by
convention), showing that orthogonal states do not correspond to orthogonal directions. In 2D,
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the states are in orthogonal directions. Any normalised superposition is a point on this sphere,
with coordinates given by the wavefunction coefficients.

By convention, the lower energy state (if it exists) is assigned to |0〉 and the higher energy to
|1〉. Just make sure to check the exam question if they specify this.

In an electron system, the lower energy state is spin-down, whilst the higher energy is spin up.

Another thing to remember is that bases of Hilbert space are not unique! Work in the basis
state that makes the maths the easiest - you can always convert between them. Don’t make life
hard for yourselves!

9.6.4 Decomposition of 2× 2 Hermitian matrices

Earlier, we said in a remark that the Pauli matrices plus identity span the 2D Hilbert space.
Indeed this is equivalent to saying any 2× 2 Hermitian matrix can be written as

Â = n0I + n · σ (9.112)

which we got from deriving the spin operator.

The eigenvalues are
n0 ± |n| = n0 ±

√
n21 + n22 + n23 (9.113)

We derived earlier the parameterisation of Ŝn into θ, φ. Comparing it to the matrix directly
above, we see the exponentials e±iφ in the off-diagonal elements acts as a phase. This corresponds
to rotations in the x− y plane.

9.6.5 Rotation matrices

Rotation matrices are a type of unitary matrix. We can construct them directly from the Pauli
matrices. This is also a problem on the problem sheet.

Proposition 9.6.1. The rotation by angle θ around each axis x, y, z is given by

Rx(θ) = exp

(
− iσxθ

2

)
=

[
cos θ/2 −i sin θ/2

−i sin θ/2 cos θ/2

]
(9.114)

Ry(θ) = exp

(
− iσyθ

2

)
=

[
cos θ/2 sin θ/2
− sin θ/2 cos θ/2

]
(9.115)

Rz(θ) = exp

(
− iσzθ

2

)
=

[
cos θ/2− i sin θ/2 0

0 i sin θ/2 + cos θ/2

]
(9.116)

For an arbitrary direction n = (nx, ny, nz) we have

Rn(θ) =

[
cos
(
θ
2

)
− inz sin

(
θ
2

)
(−inx − ny) sin

(
θ
2

)
(−inx + ny) sin

(
θ
2

)
cos
(
θ
2

)
+ inz sin

(
θ
2

)] (9.117)

9.7 Magnetic Resonance
Spectroscopy is a fundamental area of physics which has allowed us to understand swathes of
quantum and condensed matter etc. What we have shown is that our formalism maps beautifully
onto any S = 1/2 or I = 1/2 (I is the nuclear spin). When we look at magnetic resonance, we
consider what happens to an electron in a magnetic field. Indeed, it is time to bring back the
Zeeman effect.

We know that the Hamiltonian for an electron placed in a static magnetic field is described by
the coupling between its magnetic diopole moment and the magnetic field so

ĤZeeman = −µ ·B (9.118)
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For a particle of charge q, rest mass m, the magnetic dipole moment is given by

µ = g
q~
2m

S (9.119)

For an electron, this reduces to
µ = gµBS = −γS (9.120)

with µB the Bohr magneton and γ the gyromagnetic ratio. All constants will be given in
the exam so you don’t need to memorise the actual values. Maybe remember what they are in
terms of other constants if you feel fancy.

The full free electron Hamiltonian is

ĤZeeman = γBT · Ŝ (9.121)
where we have written it like this because remember, Ŝ is the vector of Pauli matrices and

Ĥ will be a matrix. Remember that B =

Bx

By

Bz

 so BT = (Bx, By, Bz). Hence:

ĤZeeman = γ(BxŜx +ByŜy +BzŜz) (9.122)

We now place the electron into a static magnetic field B0 = B0z and then apply a circularly-
polarised magnetic field of strength B1 perpendicular to the static field (so it covers x, y) and
our overall magnetic field is

B(t) = B0z+B1(x cos(ωt+ φ)− y sin(ωt+ φ)) (9.123)

Note this field oscillates clockwise (when looking down towards positive z). Substituting this
field into the electron Hamiltonian yields

ĤZeeman = γ
(
B0Ŝz +B1

(
cos(ωt+ φ)Ŝx − sin(ωt+ φ)Ŝy

))
(9.124)

We will use this Hamiltonian for the rest of the chapter.

9.7.1 Into the rotating frame

Last time we transformed from the Schrödinger picture into the so-called interaction picture,
which let us separate the Hamiltonian into some Ĥ0 (due to the bare atom) plus V̂ (t) (due to
the time-dependent magnetic field). We did this by applying a unitary transformation

ÛI = e−iĤ0t/~ |ψI〉 = Û †
I |ψS〉 (9.125)

i.e., we did a unitary transformation into a frame which rotates at the same frequency as the
bare atom. However, we still had remaining explicit time dependency due to the driving field.

We can get rid of this issue by instead transforming the entire Hamiltonian into a frame which
rotates with the driving field at frequency ωt. We therefore need to go from ĤS → ĤRF and so
|ψS〉 → |ψRF〉. This eliminates the Larmor precession.

In particular, we will make the unitary transformation

ÛRF = exp

(
+i
iωt

2
σ̂z

)
(9.126)

Note that the Hermitian conjugate is the complex-conjugate transpose, hence put a negative in
the exponential and note that the Pauli matrix σ̂z is symmetric and

Û †
RF = exp

(
−i iωt

2
σ̂z

)
(9.127)
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Theorem 9.7.1. Prove

ĤRF = Û †
RFĤSÛRF + i~

∂Û †
RF

∂t
ÛRF = Û †

RFĤSÛRF − ~ω
2
σ̂z. (9.128)

(Also a question in problem sheet)

Proof. Start with the TDSE in the RF and substitute it for |ψS〉 and expand using the product
rule:

i~
∂

∂t
|ψRF〉 = i~

∂

∂t

(
Û †

RF(t) |ψS(t)〉
)

(9.129)

= Û †
RF(t)

(
i~
∂

∂t
|ψS(t)〉

)
+

(
i~
∂

∂t
Û †
RF(t)

)
|ψS(t)〉 (9.130)

However notice that (
i~
∂

∂t
|ψS(t)〉

)
= ĤS |ψS(t)〉 (9.131)

so that simplifies the expression down to

i~
∂

∂t
|ψRF〉 =

(
Û †
RF(t)ĤS + i~

∂

∂t
Û †
RF(t)

)
|ψS(t)〉 (9.132)

However earlier we stated that |ψRF〉 = Û †
RF |ψS〉 so since the operator is unitary we have

|ψS〉 = ÛRF |ψRF〉. We substitute this latter expression in by expanding the brackets:

i~
∂

∂t
|ψRF〉 =

(
Û †
RF(t)ĤSÛRF + i~

∂

∂t
Û †
RF(t)ÛRF

)
|ψRF(t)〉 (9.133)

The Hamiltonian is the thing in brackets and we are done.

It is at this point some of you may wonder what does all of this maths mean. It encapsulates
the idea that for a general unitary transform (of which transformation into a rotating frame is
a special case), the evolution of the system depends on the evolution of the operator and the
quantum state in question, so we must operate with both ÛRF and Û †

RF.

Returning to our problem at hand, we use ĤZeeman in place of ĤS and we get

ĤRF = exp

(
−iωt

2
σ̂z

)[
γ
(
B0Ŝz +B1

(
cos(ωt+ φ)Ŝx − sin(ωt+ φ)Ŝy

))]
exp

(
+i
ωt

2
σ̂z

)
− ~ω

2
σ̂z

= exp

(
−iωt

2
σ̂z

)[
~ω0

2
σ̂z +

~Ω
2

(cos(ωt+ φ)σ̂x − sin(ωt+ φ)σ̂y)

)]
exp

(
+i
ωt

2
σ̂z

)
− ~ω

2
σ̂z

(9.134)
where Ω = γB1 and ω0 = γB0. We can simplify this expression greatly.

Similarity transform

Now, we need to do a whole lot of algebra, namely we need to recall Eq. (9.33) since, we have
a similarity transform in our Hamiltonian. We therefore need to shift everything to a matrix
representation.

Notice that the exponentials are exponentials of an operator, and therefore an operator them-
selves. We will use Eq. (9.2) and we will derive the matrix form of this operator. First note an
interesting property about σ̂z:

Lemma 9.7.1. The z Pauli matrix σ̂z is self-inverse

Proof. Squaring the matrix gives the identity matrix I.
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exp

(
±iωt

2
σ̂z

)
=

∞∑
n=1

(±iωt/2)nσ̂zn

n!
(9.135)

=⇒ exp

(
±iωt

2
σ̂z

)
=

[
exp

(
± iωt

2

)
0

0 exp
(
∓ iωt

2

)] (9.136)

You can show this by explicitly writing out the Taylor series term-by-term, but you don’t
need to do this for the exam (hopefully). Convergence is guaranteed by spectral theory for
unbounded linear operators, but don’t worry about this technicality. Our Hamiltonian in matrix
representation is therefore

ĤRF =
~
2

(
e−

iωt
2 0

0 e+
iωt
2

)
(9.137)

×
(

ω0 Ω(cos(ωt+ φ) + i sin(ωt+ φ))
Ω(cos(ωt+ φ)− i sin(ωt+ φ)) −ω0

)
(9.138)

×

(
e+

iωt
2 0

0 e−
iωt
2

)
−
( ~ω

2 0

0 −~ω
2

)
(9.139)

We rewrite everything in exponential form because this is quite an ugly equation.

ĤRF =
~
2

(
e−

iωt
2 0

0 e+
iωt
2

)
(9.140)

×
(

ω0 Ωei(ωt+φ)

Ωe−i(ωt+φ)) −ω0

)
(9.141)

×

(
e+

iωt
2 0

0 e−
iωt
2

)
−
( ~ω

2 0

0 −~ω
2

)
(9.142)

Therefore we arrive at

ĤRF = −~∆
2
σ̂z +

~Ω
2

(cos(φ)σ̂x − sin(φ)σ̂y) (9.143)

Notice ∆ = ω − ω0 as we saw last time. This ∆ is the detuning of the driving field (magnetic
field) from the Larmor precession of the spin. φ is the phase factor which rotates the field around
the xy plane.

Now, factor out a ~/2 and remember that σ̂n = n · σ, i.e. σ̂x = x · σ and so on. Therefore we
can replace all the sigmas with dot products and define a new vector Ωt satisfying

ĤRF =
~
2
Ωt · σ Ωt = −∆z+Ω(cos(φ)x− sin(φ)y) (9.144)

We have removed all time-dependence from the Hamiltonian! Therefore our wavefunction in the
rotating frame evolves as

|ψRF(t)〉 = exp

[
− iΩt · σt

2

]
|ψRF(0)〉 (9.145)

Now, recall the wavefunction in Eq. (9.111). It had a phase factor eiφ where φ caused a rotation
around its Bloch sphere. Here, we have the same thing - a phase factor exp

[
− iΩt·σt

2

]
, a function

of the azimuth φ, which causes rotations in its own Bloch sphere! The question is what axis
does it rotate about? It rotates around the Ωt axis! We can find the unit vector characterising
this axis:

Ω̂t =
Ωt

|Ωt|
=

−∆z+Ω(cos(φ)x+ sin(φ)y)√
∆2 +Ω2

. (9.146)
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Now, we want to solve for the evolution of our charged particle. To do this, we use the same
analysis we did for the ammonia and qubit: form a matrix equation and solve. We can get the
Hamiltonian directly from Eq. (9.143) and substitute in the Pauli matrices:

ĤRF =
~
2

[
−∆

[
1 0
0 −1

]
+Ω

(
cos(φ)

[
0 1
1 0

]
− sin(φ)

[
0 −i
i 0

])]
(9.147)

=
~
2

[[
−∆ 0
0 ∆+

]
+

[
0 Ω(cosφ− i sinφ)

Ω(cosφ+ i sinφ) 0

]]
(9.148)

=
~
2

[
−∆ Ωe−iφ

Ωeiφ ∆

]
(9.149)

So now we can form our Schrödinger equation in the rotating frame as

i~
d

dt
|ψRF(t)〉 =

~
2

[
−∆ Ωe−iφ

Ωeiφ ∆

]
|ψRF(t)〉 (9.150)

Remark. Some of you might question the fact we have 3 coordinates x,y, z but only a 2 × 2
Hamiltonian. The reason is because we have casted the problem in terms of 2 axes, that is the
z axis and ”stuff perpendicular to z”.

9.7.2 Visualisation of Rabi oscillations

It is time to solve the Schrödinger equation Eq. (9.150) in different cases, and then see what
the spin vector does. Since we can choose any orthonormal bases no matter what our frame of
reference is, we choose the standard |0〉 , |1〉 bases in the rotating frame.

Rotating frame, on resonance

If something is on resonance, the driving frequency matches the natural frequency so ∆ = 0.
The Hamiltonian is now

ĤRF =
~
2

[
0 e−iφ

eiφ 0

]
(9.151)

Therefore the axes of precession can be chosen to be about the z axis since the ∆z = 0 in the
expression for Ω̂t.

We form the secular determinant∣∣∣∣ −λ ~Ω
2 exp(−iφ)

~Ω
2 exp(iφ) −λ

∣∣∣∣ = 0 =⇒ λ2 − ~2Ω2

4
= 0 (9.152)

so the eigenvalues are λ± = ±~Ω
2 . The eigenvectors are found by solving:

~
2

[
0 e−iφ

eiφ 0

] [
α±
β±

]
= ±~Ω

2

[
α±
β±

]
(9.153)

This produces the system of equations (cancelling out ~/2 from both sides)

β±e
−iφ = ±Ωα± α±e

iφ = ±Ωβ± (9.154)

We cannot forget our lovely normalisation condition

|α±|2 + |β±|2 = 1

Taking the first system of equations and the normalisation condition leads us to

α± =
1

1 + |Ω|2
β± = ± Ωeiφ

1 + |Ω|2
(9.155)
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Figure 9.4: Rabi oscillations viewed in the rotating frame. We see as φ changes, it changes the
orbit through the z axis. Reproduced from the lecture notes.

So what does this mean? It means we have rotations in the azimuth plane (due to the eiφ

term) about the Ω̂t axis of constant radius! Suppose φ = 0. Then our axis of rotation given by
Eq. (9.146) tells us we are rotating about x with constant radius. Now suppose that φ = π/2.
Then now we are rotating about y. This is given by Figure 9.4.

The spin vector makes great circle orbits on the Bloch sphere. A great circle is the circle
formed when you intersect a 2D plane through a sphere’s centre - i.e. great circles are the circles
of largest diameter on a sphere. We can see that a π pulse will transfer |0〉 → |1〉.

Suppose you stop the pulse as the vector intersects the xy plane. Then you have an coherent
superposition of |0〉 and |1〉.

Rotating frame, off resonance

Now ∆ 6= 0 and now Ω̂ has a z component, which angles the rotation axis towards the north or
south (|0〉 or |1〉) poles. We can extract some useful information out of this

• The space of available states is restricted - we cannot have total population transfer be-
tween |0〉 and |1〉 (i.e. the spin vector’s rotation cycle will never intersect with both the
north and south poles, it may intersect with one of them).

• the Rabi angle, the angle made by Ω̂t to the z axis is given by

tan θR =
Ω

−∆
(9.156)

See Figure 9.5 We can perform the same mathematical analysis to derive the eigenvectors and
whatnot. It will be nearly identical except your secular determinant is now∣∣∣∣ −~∆

2 − λ ~Ω
2 exp(−iφ)

~Ω
2 exp(iφ) ~∆

2 − λ

∣∣∣∣ = 0 =⇒
(
~∆
2

− λ

)(
−~∆

2
− λ

)
− ~2Ω2

4
= 0 (9.157)

and the eigenvalues now become
λ± = ±~

2

√
∆2 +Ω2

Lab (Schrödinger) Frame, on resonance

We perform the unitary transformation back to the lab frame. We therefore must add back
what we eliminated, namely the Larmor precession. Since we are on resonance, the drive and
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Figure 9.5: Off-resonance rotations in the rotating frame when −∆ = Ω

Larmor frequency are the same, so the spin is phase coherent with the driving field. Therefore
as the spin vector moves between the poles, it also precesses in the xy-plane, giving some really
nice spiral patterns as seen in Figure 9.6

Figure 9.6: Lab frame, on resonance Rabi oscillations of the spin vector. This graphic assumes
x rotation from |0〉 → |1〉. Reproduced from lecture notes.

9.8 Key Results

Two-level systems (at time of this guide) has rarely appeared in exams. Therefore it is our best
guess as to what could appear and what is explicitly worth remembering or not. That being
said, a two-level system question will probably follow the examples we’ve seen previously.
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The Algorithm

1. Identify your orthonormal wavefunctions and write your state as a linear combina-
tion of these wavefunctions with a vector representation and choose what frame of
reference you are working in.

2. Formulate the TDSE as a matrix equation in terms of the amplitudes
3. Solve the secular determinant of the Hamiltonian to find eigenvalues and eigenvec-

tors. Do not forget to use the normalisation condition as part of your system of
equations to find the wavefunction coefficients.

4. Determine your final state and compute whatever the question asks you for (expec-
tation values, probability of transitions etc)

Also, it is worth recalling the different shapes of Rabi oscillations.

• Rotating frame, on resonance produce great circle orbits.

• Rotating frame, off resonance restrict movement to segments of the Bloch sphere.

• Lab Frame, on resonance: pretty spirals.

Moreover, know what a Bloch sphere is and how to use it. You should also know how to
transform between bases and be able to represent operators as matrices.
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